B.Tech. MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)

Term-End Examination

December, 2014

BME-015 : ENGINEERING MATHEMATICS - II

Time : 3 hours
Maximum Marks : 70
Note: Answer any ten of the following questions. All questions carry equal marks. Use of calculator is permitted.

1. Show that the series

$$
\begin{equation*}
" \frac{1.2}{3^{2} \cdot 4^{2}}+\frac{3.4}{5^{2} \cdot 6^{2}}+\frac{5.6}{7^{2} \cdot 8^{2}}+ \tag{7}
\end{equation*}
$$

2. Discuss the convergence or divergence of the series

$$
\begin{equation*}
1+\frac{2^{\mathrm{p}}}{2!}+\frac{3^{\mathrm{p}}}{3!}+\frac{4^{\mathrm{p}}}{4!}+. \tag{7}
\end{equation*}
$$

3. Find a series of cosines of multiple of x which will represent " $x \sin x$ " in the interval $(0, \pi)$.
BME-015 1 P.T.O.
4. Find the Fourier series to represent $f(x)$, where

$$
f(x)=\left\{\begin{array}{lll}
x & \text { for } & 0<x<1 \\
0 & \text { for } & 1<x<2
\end{array}\right.
$$

5. Find the modulus and principal argument of

$$
\frac{(1+\mathrm{i})^{2}}{1-\mathrm{i}}
$$

6. Show that the function u is harmonic and find the conjugate function for $u=2 x-3 x^{3}+9 x y^{2}$.
7. Simplify $\frac{(1+i)^{6}(1-i \sqrt{3})^{4}}{(1-i)^{6}(1+i \sqrt{3})^{4}}$.
8. Find the values of $\int_{c} \frac{e^{z}}{z^{2}+1} d z$, if c is a unit circle with centre at
(a) $z=i$;
(b) $\mathrm{z}=-\mathrm{i}$
9. Prove that $\int_{0}^{\infty} \frac{\cos m x}{a^{2}+\mathrm{x}^{2}} d x=\frac{\pi}{2 a} e^{-m a}, m \geq 0$. 7
10. Find the bilinear mapping that maps the points $z_{1}=\infty, z_{2}=i, z_{3}=0$ into the points $w_{1}=0, w_{2}=i$ and $w_{3}=\infty$.
11. Solve the differential equation 7
$\left(e^{x} \sin y-2 y \sin x\right) d x+\left(e^{x} \cos y+2 \cos x\right) d y=0$.
12. Use the method of variation of parameter to obtain a particular solution of

$$
y^{\prime \prime}+y=\tan x, \quad 0<x<\pi / 2 .
$$

13. Find the series solution on of the equation 7

$$
2 x^{2} y^{\prime \prime}-x y^{\prime}+(1+x) y=0
$$

14. Solve the partial differential equation

$$
\left(\frac{\partial}{\partial x}-\frac{\partial}{\partial y}\right)^{2} u=e^{x+2 y}
$$

15. Solve Laplace's equation in rectangle with

$$
u(0, y)=0, u(a, y)=0, u(x, b)=0 \text { and } u(x, 0)=f(x)
$$

