B.Tech. MECHANICAL ENGINEERING (COMPUTER INTEGRATED ANUFACTURING) BTCLEVI/BTMEVI/BTELVI/BTCSVI/BTECVI

Term-End Examination December, 2014

BME-009 : COMPUTER PROGRAMMING AND APPLICATIONS

Time: 3 hours Maximum Marks : 70

Note: Attempt any five questions. All questions carry. equal marks. Use of scientific calculator is permitted.

1. (a) Find the real roots of the equation

$$
x^{4}+x^{2}-80=0
$$

by Newton-Raphson method, correct to three decimal places.
(b) Find the roots of the equation

$$
x^{3}-x-1=0
$$

by Muller's method.
2. (a) Given the table of values :

x	150	152	154	156
$\mathrm{y}=\sqrt{\mathrm{x}}$	$12 \cdot 247$	$12 \cdot 329$	$12 \cdot 410$	$12 \cdot 490$

Evaluate $\sqrt{155}$ using Lagrange's interpolation formula. 7

BME-009
(b) Using Gauss's forward formula, find the value of $f(32)$, given that

$$
\begin{array}{ll}
\mathrm{f}(25)=0.2707, & \mathrm{f}(30)=0.3027 \\
\mathrm{f}(35)=0.3386, & \mathrm{f}(40)=0.3794 \tag{7}
\end{array}
$$

3. (a) Compute a root of the equation $e^{x}=x^{2}$ to an accuracy of 10^{5} using Iterative method.
(b) By using Horner's method, obtain the roots of the following equation :

$$
x^{3}-6 x-13=0
$$

4. (a) In the bending of an elastic beam the normal stress y at a distance x from the middle section is given by the following table :

\mathbf{x}	$:$	0.0	0.25	0.50	0.75	1.00
\mathbf{y}	$:$	0.46	0.39	0.25	0.12	0.04

Use Newton's forward interpolation formula to deduce the value of y, where $x=0.04$.
(b) Use Gauss's forward central difference formula to find $f(33)$, given the following table :

x	$:$	1	2	3	4
$f(x):$	$15 \cdot 30$	$15 \cdot 10$	$15 \cdot 00$	$14 \cdot 50$	$14 \cdot 00$

5. (a) Find the inverse of the matrix

$$
A=\left[\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]
$$

using the Gauss-Jordan method.
(b) Compute four iterations of the Jacobi method for solving the system of equations given below :

$$
\left[\begin{array}{lll}
5 & 2 & 2 \\
2 & 5 & 3 \\
2 & 1 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
1 \\
-6 \\
4
\end{array}\right]
$$

with $x^{(0)}=0$. Exact solution is $\mathrm{x}=(1-1-1)^{\mathrm{T}}$.
6. (a) Write a C^{++}program to print the sum and count of non-negative numbers out of a list of 150 numbers.
(b) Write a C^{++}program that reads a temperature in degree Celsius and prints the equivalent in Fahrenheit by the formula

$$
\begin{equation*}
\frac{C}{5}=\frac{F-32}{9} . \tag{7}
\end{equation*}
$$

7. (a) Write a C^{++}program to calculate and print the roots of a quadratic equation

$$
\begin{equation*}
a x^{2}+b x+c=0 \tag{7}
\end{equation*}
$$

(b) (i) How will you access the memory address of a variable?1
(ii) What is a null object? 2
(iii) What is a global class and a local class? 2
(iv) What is the difference between a pointer and an array? 2
8. (a) Write a C^{++}program to calculate the minimum, maximum and average values of a given set of n numbers.
(b) (i) Find out the error(s) if any, in the following code :
If $x<y \min =x$, else $\min =y$.
(ii) Explain the difference between the
following two declarations:

Int $\mathrm{n} 1=\mathrm{n}$;
Int and $\mathrm{n} 2=\mathrm{n}$;
2
(iii) What is a nested loop ? Give an
example.
(iv) Discuss the basic file input/output
operations in C^{++}.

