No. of Printed Pages: 4

BIEL-025

B.Tech. - VIEP - ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)

 $00530 \qquad \begin{array}{r} \textbf{Term-End Examination} \\ \textbf{December, 2014} \end{array}$

BIEL-025 : ADVANCED MICROPROCESSOR ARCHITECTURE

Time: 3 hours Maximum Marks: 70

Note: Attempt any **seven** questions. All questions carry equal marks.

- 1. Indicate whether each of the following statements are *true* or *false* and justify your answer with reasoning and supportive examples.
 - (a) The CPU computations and I/O operations cannot be overlapped in a multiprogrammed computer.
 - (b) Synchronization of all PEs in an SIMD computer is done by hardware rather than by software as is often done in most MIMD computers.

5

5

	(α)	20gree of parametrism			
	(b)	Anti dependence			
	(c)	Resource dependence			
	(d)	Bernstein's conditions			
3.	3. Explain the significance of the following term				
	assoc	siated with cache design: $4 \times 2 \frac{1}{2} = 10$			
	(a)	Write-through versus Write-back caches			
	Cache flushing policies				
	(c)	Factors affecting cache hit ratio			
	(d)	Cacheable versus Non cacheable data			
4.	(a)	Explain the 'inclusion property' and			
		'memory coherence' requirements in a			
		multilevel memory hierarchy. 5			
	(b)	Distinguish between write-through and write-back policies in maintaining the			
		coherence in adjacent levels. 5			
5.	Expla	ain the following terms associated with			
	multicomputer networks and message-passing				
		anism: $4 \times 2 \frac{1}{2} = 10$			
	(a)	Message, packets and flits			
	(b)	Buffering flow control using virtual cut-through routing			
	(c)				
	• • •				

Define the following terms related to parallelism

and dependence relations:

Degree of parallelism

(d)

2.

(a)

Blocking flow control in wormhole routing

 $4 \times 2 \frac{1}{2} = 10$

- 6. Distinguish among the following vector processing machines in terms of architecture, performance range, and cost-effectiveness: $2\times5=10$
 - (a) High-end mainframes or near-supercomputers
 - (b) Mini supercomputers or super computing workstations.
- 7. Consider the five-stage pipelined processor specified by the following reservation table: $4\times2\frac{1}{2}=10$

_	1	2	3	4	5	6
S1	X					X
S2		X		,	X	·
S3			X			
S4				X		
S5		X				X

- (a) List the set of forbidden latencies and the collision vector.
- (b) List all the simple cycles from the state diagram.
- (c) Identify the greedy cycles among the simple cycle.
- (d) What will be the maximum throughput of this pipeline?

8.	(a)	Why has shared virtual memory (SVM)					
		become a necessity in building a scalable					
		system with memories physically					
		distributed over a large number of					
		processing nodes?					
	(h)	What are the major differences in					

5

(b) What are the major differences in implementing SVM at the cache block level and page level?

5

- **9.** Define the following loop transformations and discuss how they can be applied for loop vectorization or parallelization: $4\times2\frac{1}{2}=10$
 - (a) Loop permutation
 - (b) Loop skewing
 - (c) Wavefront transformation
 - (d) Software pipelining
- 10. A computer system has a 128-byte cache. It uses four-way set associative mapping with 8 bytes in each block. The physical address size is 32 bits, and the smallest addressable unit is 1 byte.
 - (a) Draw a diagram showing the organization of the cache and indicating how physical address is related to cache address.

5

(b) To what block frames of the cache can the address (000010AF)₁₆ be assigned?