B.Tech. Civil (Water Resources Engineering)
 Term-End Examination
 00255
 December, 2014

ET-533(B) : OPEN CHANNEL FLOW

Time : 3 hours

Maximum Marks : 70

Note: Answer any five questions. All questions carry equal marks. Neat and well-labelled sketches are to be given where necessary. Use of calculator is permitted.

1. (a) Explain the following terms with respect to open channel flow :
(i) Hydraulic and energy gradients
(ii) Steady and unsteady flow
(iii) Uniform and varied flow
(b) Water flows in a rectangular channel 3.0 m wide at a velocity of $3.0 \mathrm{~m} / \mathrm{s}$ and at a depth of 3.0 m . There is an upward step of 0.61 m . What expansion in width must take place simultaneously for this flow to be possible as specified?
2. (a) Explain the applications of specific energy principle to flow situations with a neat sketch.
(b) Explain sequent depths with respect to rectangular sections.
3. (a) Explain the characteristics of various water surface profiles.
(b) Water flows from under a sluice into a trapezoidal channel having a bed width $=6.0 \mathrm{~m}$, side slope of 2 horizontal to 1 vertical, bed slope, $S_{0}=0.0036$, energy coefficient $\alpha=1.10$ and Manning's $\mathrm{n}=0.025$. The sluice gate is regulated to discharge $11 \mathrm{~m}^{3} / \mathrm{s}$ with a depth of 0.2 m at the vena contracta. Determine the behaviour of flow profile at a section where the depth of flow is 0.40 m .
4. (a) Derive the expression for minimum possible energy in subcritical flow with a hump.
(b) A rectangular channel has a width of 2.0 m carrying a discharge of 5 cumecs with a depth of 1.25 m . At a certain section of the channel a small smooth hump, with a flat top and a height of 0.10 m , is proposed to be built. What is the likely change in the water surface, neglecting any loss of energy?
5. What are Surge waves ? Explain their classification with neat sketches.
6. Water flows from under a sluice into a rectangular channel having a width of 5 m , bed slope of 0.004 and Manning's friction factor of 0.025 . The sluice gate is regulated to discharge $50 \mathrm{~m}^{3} / \mathrm{s}$ with a depth of 0.025 m at vena contracta. Compute and locate the flow profile.
7. (a) Derive an expression for gradually varied flow equation with the help of a neat sketch.
(b) A rectangular channel, 6 m wide, carries a discharge of $36.16 \mathrm{~m}^{3} / \mathrm{s}$, with a bed slope, $\mathrm{S}_{0}=0.0016$ and Manning's $\mathrm{n}=0.015$. Compute the water surface slopes at sections where depth of flow are 2.5 m and 1.8 m , respectively. Assume the following data to be applicable to the channel under consideration :

The normal depth $y_{n}=2.00 \mathrm{~m}$
The critical depth $y_{c}=1.55 \mathrm{~m}$
Uniform flow velocity $\mathrm{v}_{\mathrm{n}}=3.01 \mathrm{~m} / \mathrm{s}$ $\cos \theta=1$, and velocity coefficient $\alpha=1.0$7
8. Write short notes on any four of the following :
(a) Wave spectrum
(b) Wave parameters
(c) First order wave theory
(d) Potential wave energy
(e) Kinetic wave energy

