B.Tech. Civil (Construction Management)/

B.Tech. Civil (Water Resources Engineering)

Term-End Examination
December, 2014

1.1 I 11

ET-302(A) : COMPUTER PROGRAMMING AND NUMERICAL ANALYSIS

Time : 3 hours

Maximum Marks : 70
Note: Attempt any five questions. All questions carry equal marks. Use of calculator is permitted.

1. (a) Write the arithmetic statement functions for the following :
(i) $\frac{x^{2}-y^{2}}{|x-y|}$
(ii) $x^{2}-y^{2} z-z x^{2}-z^{2} y$
(b) Find the value of the logical expression . NOT . A . AND . B . OR . A . AND . NOT . B when
(i) Both A and B have False value.
(ii) A has value True and B has value False.
2. (a) Explain with examples difference between unformatted WRITE/READ and formatted WRITE/READ statements.
(b) If $\mathrm{A}(1), \mathrm{A}(2) \ldots \ldots . . \mathrm{A}(20)$
and $B(1), B(2) \ldots \ldots \ldots . . B(20)$
are two arrays of numbers and
$\mathrm{C}(\mathrm{I})=\mathrm{A}(\mathrm{I})+\mathrm{B}(\mathrm{I})$ where $\mathrm{I}=1, \ldots \ldots 20$, write a program to read two arrays A and B, and print C.
3. (a) Use Runge's method to approximate y when $x=1 \cdot 1$ given that $y=1 \cdot 2$. when $x=1$ and $\frac{d y}{d x}=3 x+y^{2}$.
(b) The following table gives the values of x and y. Use appropriate central difference formula to find the value of y when x is $3 \cdot 8$.

$$
\begin{array}{lccccc}
\mathrm{x}: & 3 \cdot 0 & 3 \cdot 5 & 4 \cdot 0 & 4 \cdot 5 & 5 \cdot 0 \\
\mathrm{y}: & 15 \cdot 9 & 14 \cdot 9 & 14 \cdot 1 & 13 \cdot 3 & 12 \cdot 5
\end{array}
$$

4. (a) Show that the square root of $N=A B$ is given by $\sqrt{N}=\frac{S}{4}+\frac{N}{S}$, where $S=A+B$.
(b) Solve the following system of equations using Gauss-Seidel iterative method :

$$
\begin{align*}
& 2 x+10 y+z=51 \\
& 10 x+y+2 z=44 \\
& x+2 y+10 z=61 \tag{7}
\end{align*}
$$

5. (a) Prove that
(i) $\Delta \log f(x)=\log \left(1+\frac{\Delta f(x)}{f(x)}\right)$
(ii) $\Delta \sqrt{u_{x}}=\frac{\Delta u_{x}}{\sqrt{u_{x}}+\sqrt{u_{x+n}}}$
(b) Find $f^{\prime}(x)$ at $x=0.4$ from the following table of values given below :
$\mathrm{x}: \quad 0 \cdot 1$
$0 \cdot 2$
$0 \cdot 3$
0.4
$f(x): \quad 1 \cdot 10517 \quad 1.22140 \quad 1.34986 \quad 1.49182$
6. (a) Find the inverse of the matrix using LU decomposition

$$
A=\left[\begin{array}{rrr}
3 & 1 & 2 \\
2 & -3 & -1 \\
1 & -2 & 1
\end{array}\right]
$$

Also show that your answer is correct.
(b) Solve the system of equations

$$
\begin{aligned}
& x+y+z=1 \\
& 4 x+3 y-z=6 \\
& 3 x+5 y+3 z=4
\end{aligned}
$$

using Gauss-Jordan method with pivoting.
7. (a) Show that if $\lambda_{1}, \lambda_{2} \ldots \lambda_{\mathrm{n}^{\prime}}$ are the eigenvalues of A, then $\frac{1}{\lambda_{1}}, \frac{1}{\lambda_{2}} \ldots \frac{1}{\lambda_{n}}$ are the eigenvalues of A^{-1}.
(b) State the following:
(i) Rolle's theorem
(ii) Lagrange's mean value theorem
(iii) Taylor's theorem
8. (a) Evaluate $I=\int_{0}^{1} \frac{d x}{1+x}$ correct to three decimal places by Trapezoidal rule with $h=0.5,0.25,0.125$. Use Romberg integration to get an accurate value for the definite integral. Hence find the value of $\log 2$.
(b) Calculate a bound for the truncation error in approximating $\mathrm{e}^{\mathrm{x}^{2}}$ by

$$
\begin{equation*}
\left.e^{x^{2}}=1+x^{2}+\frac{x^{4}}{2!}+\frac{x^{6}}{3!}+\frac{x^{8}}{4!} \text { for } x \in\right]-1,1[\tag{7}
\end{equation*}
$$

