P.G. DIPLOMA IN ANALYTICAL CHEMISTRY 0280(PGDAC)

Term-End Examination December, 2012

MCH-003: SPECTROSCOPIC METHODS

Time: 3 hours Maximum Marks: 75

Answer any five questions in all. Question number 1 is Note: compulsory.

Answer any five of the following: 1.

5x3=15

- (a) Define -
 - (i) Nebulizer
 - (ii) Monochromator
 - (iii) Line spectrum
- What are the advantages of GFAAS? (b)
- What is the role of organic solvent in (c) atomization?
- Define sensitized fluorescence. Discuss its (d) significance.
- State Beer-Lambert' law. List the deviations (e) observed from this law.
- (f) Explain the basic principle of mass spectrometry and list different types of peaks obtained in mass spectra.

2.	(a)	Explain - degree of depolarization in Raman spectrum. What is its significance ?	4
	(b)	What kind of assembly is required for room temperature phosphorescence (RTP) measurement? Explain with a suitable diagram.	6
	(c)	Describe various types of reactions producing fluorescence.	5
3.	(a)	What types of interferences are possible in flame photometric analysis?	5
	(b)	Describe different mechanisms of non- radiative relaxation of an excited electronic state.	5
	(c)	Describe the role of H_2O_2 in analysis of glucose in fluorimetry ?	5
4.	(a)	Differentiate between internal conversion and intersystem crossing.	4
	(b)	What is chemiluminescence? Explain how it is useful in the determination of NO - NO_2 in polluted air.	5
	(c)	Give reasons -	6
		(i) AFS has not been accepted widely as analytical technique.	
		(ii) Use of total consumption burner is exceptional.	

5.	(a)	Explain why a sharp line source is required in atomic absorption spectrophotometry?	5
	(b)	Describe standard addition method of analysis for flame photometric measurements.	5
	(c)	Ar is the best choice for all types of plasma sources. Justify.	5
6.	(a)	What are the slew scan instruments? State the importance.	5
	(b)	Describe applications of inductively coupled plasma atomic emission spectrometry. (ICPAES).	5
	(c)	Draw a neat diagram of ICP torch and explain the working of various components involved in it.	5
7.	(a)	What are the advantages of using a magnet with higher field strength in NMR spectroscopy?	4
	(b)	Draw a schematic diagram of a double focussing mass spectrometer and explain its working.	6
	(c)	How will you distinguish between ethanol (C_2H_5OH) and dimethyl ether (CH_3OCH_3) on the basis of NMR spectra.	5

- 8. (a) Discuss the importance of molecular formula and Index of Hydrogen Deficiency (IHD) in the structure elucidation of an organic compound.
 - (b) Calculate IHD in the following cases -
- 3

- (i) $C_{10} H_{22}$
- (ii) C₇ H₈
- (iii) $C_4 H_{11} N$
- (c) A compound having formula C₃H₆O 7 showed following spectral data -IR-strong absorption at 1700 cm⁻¹

NMR - δ = 2.2, single signal

Mass - peak at $m/z = 15, 43, 58, M^+, = 58$ Base peak = 43

Determine the structure of the molecule and assign the signals.