B.Tech. MECHANICAL ENGINEERING (BTMEVI)

Term-End Examination December, 2012

BIMEE-005 : EXPERIMENTAL STRESS ANALYSIS

Time : 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks. Use of Calculator is permitted.

1. A fringe order of 2.5 was observed at a point in a10 stressed plane stress model with light having a wavelength of 589 nm . Assuming that ' C ' remains constant, what fringe order would be observed at the point considered when light with $\lambda=548 \mathrm{~nm}$ is used ?
2. The maximum shear stress at a point in a model of 0.5 cm thickness is 9 MPa . The fringe order is 4.5 when observed with sodium light. Another model made of the same material and having a thickness 0.7 cm is subjected to a plane state of stress. Observation of this model under mercury light reveals a fringe order of 5.0.
Evaluate the individual principal stresses at the point if one of the stresses, say σ_{1} is twice the value of the other principal stress σ_{2}, i.e. $\sigma_{1}=2 \sigma_{2}$.
3. Describe with the help of neat diagram any two 10 types of Mechanical strain gauges.
4. Explain in brief any two types of Electrical Strain $\mathbf{1 0}$ Gauges with the help of neat diagram
5. Differentiate between unbonded-wire strain 10 gauge and bonded-wire strain gauge. Explain any one with the help of neat diagram.
6. The state of stress at a point with respect to the $\mathbf{1 0}$ $x y z$ system is :

$$
\left[\begin{array}{ccc}
3 & 2 & -2 \\
2 & 0 & -1 \\
-2 & -1 & 2
\end{array}\right] \mathrm{kN} / \mathrm{m}^{2}
$$

Determine the Stress tensor relative to the $x^{\prime} y^{\prime} z^{\prime}$ coordinate system obtained by a rotation through 30° about the z-axis.
7. The displacement field in a body is specified as: $\mathbf{1 0}$

$$
\begin{aligned}
& \mathrm{u}_{x}=\left(x^{3}+3\right) \times 10^{-3} \\
& \mathrm{u}_{y}=3 y^{2} z \times 10^{-3} \\
& \mathrm{u}_{z}=(x+3 z) \times 10^{-3}
\end{aligned}
$$

Determine the strain components at a point whose co-ordinates are ($1,2,3$).
8. The rectangular stress components at a point P inside a Stressed body are:
$\sigma_{x}=2, \sigma_{y}=4, \sigma_{z}=8, \tau_{x y}=4, \tau_{y z}=-6$, and $\tau_{z x}=2$, all in MPa. Find the principal Stresses.
9. The displacement Components are given by:

$$
\mathrm{u}_{x}=\mathrm{k}\left(x^{2}+2 x\right) ; \quad \mathrm{u}_{y}=\mathrm{k}\left(4 x+2 y^{2}+z\right),
$$

$\mathrm{u} z=4 \mathrm{k} z^{2}$
where k is a small quantity. Calculate the linear strain at the point $(2,2,3)$ in the direction

$$
n_{x}=0, \quad n_{y}=\frac{1}{\sqrt{2}}, \quad n_{z}=\frac{1}{\sqrt{2}} .
$$

10. Compute Lame's coefficients ' γ ' and ' G ' for steel 10 having $\mathrm{E}=207 \times 10^{6} \mathrm{kPa}$; and $\gamma=0.3$. Where $\mathrm{E}=$ Young's modulus, and $\gamma=$ Poission's ratio.
