No. of Printed Pages : 3

BIEEE-009

B.Tech. ELECTRICAL ENGINEERING (BTELVI)

Term-End Examination

December, 2012

BIEEE-009 : DIGITAL CONTROL SYSTEM DESIGN

Time : 3 hours	Maximum M	larks :	70

Note :	(i)	Attempt any seven questions.
	(ii)	Each question carry equal mark

- Explain the sample and hold operation. Also 10 define the fundamental parameter of sample and hold device.
- Obtain the mathematical model and frequency 10 domain characteristics of First Order Hold (FOH) circuit.
- 3. Consider the system shown in figure

has the transfer function $G(s) = \frac{1}{(s + a)}$

where 'a' constant. The input to the system is a unit step function. $e(t) = u_s(t)$. Evaluate the output of the system by modified Z - transform method.

BIEEE-009

P.T.O.

10

1

- 4. What is the Jury's stability criterion ? Check 10 stability by Jury's stability criterion. $2z^4+7z^3+10z^2+4z+1 = 0$
- 5. Consider a process with the transfer function 10 $G(s) = \frac{K}{s(s+2)}$ which proceeded by a Zero Order Hold (ZOH) (T=0.2 sec) has the discrete time transfer function. Plot the root locus.
- 6. Draw the state diagram of given equation : $x_{1}^{\circ}(t) = a_{11} x_{1}(t) + a_{12} x_{2}(t) + b_{1}u(t)$ $x_{2}^{\circ}(t) = a_{21} x_{1}(t) + a_{22} x_{2}(t) + b_{2}u(t)$ $y(t) = c_{1} x_{1}(t) + c_{2} x_{2}(t)$
- 7. Define the Cayley Hamilton theorem. Evaluate 10 the state transition matrix of given system. $x^{\circ} = Ax$. Where

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & -2 \\ 0 & 1 & 0 \\ 1 & 0 & 3 \end{bmatrix}; \ x(0) = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

 Draw and obtain Jordon canonical form of given 10 transfer function :

$$G(s) = \frac{s+3}{(s+2)^2(s+5)}$$

How to design the controller by the pole placement 10 method using state feedback for SISO System ?

BIEEE-009

10. A state equation of a digital control system 10 x(k+1) = Ax(k) + Bu(k). Obtain the state transison matrix $\phi(k)$ where :

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}$$

BIEEE-009