BIEEE-002

01081	B.Tech. ELECTRICAL ENGINEERING (BTELVI) Term-End Examination December, 2012		
01(
BIEEE-002 : DIGITAL CONTROL SYSTEM			
Time : 3 Hours		Maximum Marks : 70	
Not	te : (1) Attempt any seve (2) All question carry		
1.	Find the Z-transform for (a) $u_s(t)$ unit step func (b) e^{-at} (c) $tu_s(t)$ (d) sinwt		10
2.	Obtain a mathematical mo Operation. Also, der equation.	odel of sample and Hold ive Zero Order Hold	10
3.	Explain the specifications of digital control system	s of frequency response with suitable diagram.	10
4.	For a control system $x^{\circ}(t) = Ax(t) + bu(t)$ y(t) = (x(t))		10
BIEEE-002		Р.	Т.О.

draw the state diagram and obtain the transfer function where :

$$A = \begin{bmatrix} 0 & -1 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & -10 \end{bmatrix}, \quad b = \begin{bmatrix} 0 \\ 0 \\ 10 \end{bmatrix}, \quad c = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}.$$

5. Explain how to solve the state equation $x^\circ = Ax$. 10 Also get the Response where

$$A = \begin{bmatrix} 0 & 0 & -2 \\ 0 & 1 & 0 \\ 1 & 0 & 3 \end{bmatrix}, \quad x(0) = \begin{bmatrix} 0 \\ 10 \end{bmatrix}$$

- 6. What is jury stability test? Check the stability of **10** function.
 - (a) F (z) = $z^3 + 3.3z^2 + 4z + 0.8$.

(b)
$$2z^4 + 7z^3 + 10z^2 + 4z + 1$$

 Explain the necessary conditions of Liapunov 10 stability method. Check stability for given system.

 $x_1(K+1) = -0.5x_1(K)$ $x_2(K+1) = -0.5x_2(K_1)$

8. Derive the expression of discrete Euler-Lagrange **10** equation and transversality condition equation.

BIEEE-002

9. Find optimal control

 $4^{\circ}(k)$; $K\,{=}\,0,$ 1, 2 - - - 10 such that the

performance Index
$$J = \frac{1}{2} \sum_{K=0}^{10} (x^2(K) + 24^2(K))_{is}$$

minimized, subject to the equality constraint. x(K+1) = x(K) + 24(K) initial state is x(0) = 1, x(11) = 0 final state.

10. Obtain the Expression of Riccati equation.

10