No. of Printed Pages : 3

BIEE-033

DIPLOMA ELECTRICAL ENGINEERING (DELVI)

22		Term-End Examination		
00		December, 2012	December, 2012	
	BIEE	-033 : ELECTRICAL CIRCUIT THEO	RY	
Tim	e : 2 ha	ours Maximum Ma	arks : 70	
Not	re: A m	ttempt any five questions. All questions carr arks.	ry equal	
1.	(a)	Explain the following with example :	6	
		(i) Active and passive elements		

- (ii) Unilateral and Bilateral elements
- (iii) Linear and non linear elements
- (b) With the help of V-I characteristics explain 4 ideal and practical voltage source.
- (c) Calculate power supplied by 60 V source in 4 fig 1.

BIEE-033

- (a) State Kirchhoff's current and voltage law 7 with suitable circuit.
 - (b) Find equivalent resistance between A and 7 B of fig - 2.

- 3. (a) State and explain Super position Theorem. 7
 - (b) Find R_L between AB terminals so that maximum power is consumed by R_L for circuit shown in fig - 3.

7

- (a) What are transients ? Why they are 7 produced ? Explain with an example.
 - (b) Define power factor. What are the 7 disadvantage of low power factor ?

BIEE-033

5. (a) A current i = 14.14 sin $\left(wt - \frac{\pi}{3}\right)$ flows in 7

an electric circuit when a voltage of $\vartheta = 141.4$ sin wt is applied to it. Find power and power factor of the circuit. State whether power factor is leading or lagging.

7

- (b) A 120V, 50Hz ac supply is connected across a coil of 10Ω resistance and 30Ω reactance. What would be the average power in the circuit ? Also calculate power factor of the circuit.
- 6. Explain resonance in R-L-C series circuit. Derive 14 the expression for resonance frequency. Also prove that resonance frequency $fr = \sqrt{f_1 f_2}$ where f_1 and f_2 are the frequencies corresponding to half power points.
- 7. (a) Derive step response of R-C circuit.
 (b) For R-L series circuit draw impedance and
 7
 - (b) For R-L series circuit draw impedance and 7 power triangles.
- 8. Write short notes on **any four** of the following :
 - (a) Duality 3.5x4=14
 - (b) Thevenin Theorem
 - (c) Star delta Transformation
 - (d) Q factor
 - (e) Nodal analysis

BIEE-033

3