Term-End Examination

December, 2012

BICS-037 : OPERATING SYSTEM

Time : 2 hours

Maximum Marks: 70

Note: Attempt any five questions. Question No. 1 is compulsory.

- 1. Choose the correct answer :
 - (a) Thrahsing can be avoided if :
 - (i) the pages belonging to the working set of the programs are in main memory
 - (ii) the speed of CPU is increased.
 - (iii) the speed of I/O processor is increased
 - (iv) all of the above
 - (b) In virtual memory systems, dynamic address translation :
 - (i) is the hardware necessary to implement paging.
 - (ii) stores pages at a specific location on disk
 - (iii) is useless when swapping is used.
 - (iv) is part of the operating system paging algorithm

BICS-037

P.T.O.

BICS-037

00291

7x2=14

1

- (c) The memory allocation scheme subject to external fragmentation is :
 - (i) segmentation
 - (ii) indirect addressing
 - (iii) swapping
 - (iv) pure demand paging
- (d) Process is :

- (i) program in high level language kept on disk
- (ii) contents of main memory
- (iii) a program in execution
- (iv) a job in secondary memory
- (e) The initial value of the semaphore that allows only one of the many processes to enter their critical sections is :
 - (i) 8 (ii) 1
 - (iii) 16 (iv) 0
- (f) A page fault :
 - (i) is an error in a specific page
 - (ii) occurs when a program access a page of memory
 - (iii) is an access to a page not currently in memory
 - (iv) is a reference to a page belonging to another program.

BICS-037

- (g) Operating system :
 - (i) Links a program with the subroutines it references
 - (ii) provides a layered, user friendly interface
 - (iii) enables the programmer to draw a flow chart.
 - (iv) all of the above
- 2. (a) What is an operating system? Write down 7 the steps of memory management and process management functions of an operating system.
 - (b) What is the main purposes of a system call 7 and a system program ? Define Kernel and describe various operations performed by Kernel.
- 3. (a) Explain different states of a process with 7 the help of a state transition diagram and also explain Process Control Block (PCB).
 (b) Consider following set of processors : 7
 - (b) Consider following set of processes :

Process	Arrival time	Burst time		
P_1	0	8		
P_2	1	4		
P_3	2	9		
P_4	3	5		

Calculate average waiting time in :

- (i) Pre-emptive SJF scheduling
- (ii) NON pre-emptive SJF scheduling and Draw Gantt Chart also.

BICS-037

- 4. (a) What are the objectives of CPU scheduling ? Differentiate between multi level queue and multilevel feedback queue scheduling with suitable examples.
 - (b) What are the semaphore ? What is the usage of semaphore ? Define Race Conditions and describe the method used to prevent race condition.
- 5. (a) Describe Dining philosopher problem with its solution.
 - (b) Considering a system with 5 processes P₀ through P₄ and three resources types A,B,C. Resource type A has 7, B has 2 and C has 6 instances. Suppose at t₀ time we have following state :

Process	A1	locati	ion	F	leques	st	A	vaila	ble
	А	В	С	А	В	С	А	В	С
P_0	0	1	0	0	0	0	0	0	0
P_1	2	0	0	2	0	2			
P_2	3	0	3	0	0	0			
P_3	2	1	1	1	0	0			
P_4	0	0	2	0	0	2	_		_

Show that given system in deadlock state ?

- 6. (a) Describe the implementation of paging and 7 segmentation with suitable example.
 - (b) Compare the three page replacement 7 algorithm :
 - (i) FIFO (ii) LRU and
 - (iii) optimal with examples

BICS-037

7

7

7

7

4

What is virtual memory ? Describe it working in 14 detail.

8. Attempt *any four* parts of the following : 3.5x4=14

- (a) I/O management
- (b) Disk Scheduling
- (c) Shell and AWK programming
- (d) File management
- (e) Dead lock detection and avoidance
- (f) RAID and disk Caches.