B.Tech-VIEP CIVIL ENGINEERING

Term-End Examination
December, 2012
BICE-025 : HYDRAULICS AND HYDRAULIC
MACHINES
Time : 3 Hours Maximum Marks : 70

Note: (i) Answer any seven questions.
(ii) Answers to be written in English only.
(iii) Assume missing data if any. Use of calculator is permitted.

1. (a) Differentiate between the following 6
(i) Steady Flow and Unsteady flow
(ii) Uniform flow and Non-uniform flow
(iii) Rapidly varied flow and Gradually Varied flow
(b) Find the discharge through a trapezoidal 4 channel of width 8 m and side slope of 1 horizontal to 3 vertical. The depth of flow of water is 2.4 m and value of chezy's constant, $C=50$. The slope of the bed of the channel is 1 is 4000 .
2. (a) Explain the following Forms.
(i) Specific energy
(ii) Critical depth and
(iii) Critical Velocity
(b) A rectangular channel of width 4 m is having a bed slope of 1 in 1500 . Find the maximum discharge through the channel. Take value of $C=50$.
3. (a) Show that in a rectangular open channel 5 the critical depth is two thirds of specific energy.
(b) Derive the condition for the best side slope of the most economical trapezoidal channel.
4. The depth of flow of water, at a certain section of 10 a rectangular channel of 2 m wide, is 0.3 m . The discharge through the channel is $1.5 \mathrm{~m}^{3} / \mathrm{s}$. Determine wether a hydraulic jump will occur, and if so, find it's height and loss of energy per kg of water.
5. Determine the length of the back water curve
caused by an afflux of 2.0 m in a rectangular channel of width 40 m and depth 2.5 m . The slope of the bed is given as 1 in 11000 . Take manning's $\mathrm{N}=0.03$.
6. (a) Explain the following :
(i) Hydraulic efficiency of a Turbine.
(ii) Mechanical efficiency of turbine.
(iii) Volumetric efficiency of turbine
(b) Define Cavitation in a pump ? What are the
effects of Cavitation? Give-the necessary precautions against Cavitation.
7. The internal and external diameter of an impeller $\mathbf{1 0}$ of a centrifugal pump which is running at 1000 r.p.m, are 200 mm and 400 mm respectivelyThe dischares through pump is $0.04 \mathrm{~m}^{3} / \mathrm{s}$ and velocity of flow is constant and equal to $2.0 \mathrm{~m} / \mathrm{s}$. The diameters of the suction and delivery pipes are 150 mm and 100 mm respectively and suction and delivery heads are 6 m (abs) and $30 \mathrm{~m}(\mathrm{abs})$ of water respectively. If the outlet vane angle is 45° and power required to drive the pump in 16.186 kw, determine :
(a) Vane angle of the impeller at inlet
(b) Overall efficiency of the pump and
(c) Manometric efficiency of the pump.
8. (a) A turbine develops 9000 kw when running at 10 rpm . The head on the turbine is 30 m . If the head on the turbine is reduced to 18 m , determine the speed and power developed by the turbine?
(b) Differentiate between the following.
(i) Radial and axial flow turbines.
(ii) Kaplan and propeller turbines.
9. Write short notes on the following :
(a) Speed ratio of a pelton wheel
(b) Draft tube and it's functions
(c) Specific speed and its significance in the study of hydraulic machines
(d) Governing mechanism of Francis Turbine
