DIPLOMA IN CIVIL ENGINEERING DCLE(G) DIPLOMA IN MECHANICAL ENGINEERING (DME)

Term-End Examination
December, 2012

01480

BET-037 : FLUID MECHANICS

Time : 2 hours
Maximum Marks : 70
Note: All questions are compulsory. Drazo neat sketch wherever necessary. Use of scientific calculator is permitted.

1. Select the correct alternatives:
$2 \times 7=14$
(a) Newton law of viscosity relates:
(i) the shear stress and strain in a fluid
(ii) the shear stress, pressure and velocity
(iii) the shear stress and rate of strain
(iv) none of the above
(b) Capillary rise and depression phenomena:
(i) are observed only in vertical tubes.
(ii) depend solely upon the surface tension of the liquid.
(iii) depend upon the surface tension of the liquid as well as the material of the tube.
(iv) depend upon the pressure difference between the liquid and the environment.
(c) The total energy represented by Bernaulli's equation $\left(\frac{p}{w}+\frac{v^{2}}{z g}+Z\right)$ has the units :
(i) Nm / s
(ii) Ns / m
(iii) Nm / m
(iv) Nm / N
(d) The Rynold's number is defined as the ratio of :
(i) gravity force to viscous force
(ii) viscous force to inertia force
(iii) inertia force to viscous force
(iv) gravity force to inertia force
(e) A tube tapers from 0.2 m to 0.02 m diameter. If the velocity at the first cross-section is $0.5 \mathrm{~ms}^{-1}$, then velocity at the second cross-section is :
(i) $\quad 50.0 \mathrm{~ms}^{-1}$
(ii) $5.0 \mathrm{~ms}^{-1}$
(iii) $1.0 \mathrm{~ms}^{-1}$
(iv) $0.5 \mathrm{~ms}^{-1}$
(f) The Total Energy Line (TEL) represents the sum of :
(i) pressure head and kinetic head
(ii) kinetic head and datum head
(iii) pressure head and datum head
(iv) pressure head, kinetic head and datum head.
(g) The maximum velocity through a circular channel takes place when depth of flow is equal to :
(i) 0.95 times the diameter
(ii) 0.50 time the diameter
(iii) 0.81 times the diameter
(iv) 0.61 times the diameter
2. Answer any two of the following:
(a) The specific volume of a certain gas is $0.70 \mathrm{~m}^{3} / \mathrm{kg}$. Determine its specific weight and mass density.
(b) Estimate the height to which water column at $20^{\circ} \mathrm{C}$ will rise in a capillary tube 3 mm diameter. Take $\sigma=0.0735 \mathrm{~N} / \mathrm{m}$.
(c) A rectangular tank 5 m long and 2 m wide contains water upto a depth of 2.5 m . Calculate the pressure on base and vertical sides of the tank.
3. Answer any two of the following : $7 \times 2=14$
(a) An inclined nipe carrying water gradually changes in u neter from 15 cms at A to 40 cm at B at a height of 4.5 m above A . If the pressure at A and B are respectively $68.67 \mathrm{kN} / \mathrm{m}^{2}$ and $49.05 \mathrm{kN} / \mathrm{m}^{2}$ and the discharge is $0.150 \mathrm{~m}^{3} / \mathrm{s}$, determine :
(i) the direction of flow, and
(ii) the head loss between A and B
(b) A venturimeter having a throat diameter of 100 mm is fitted in a pipe of diameter 250 mm through which oil of specific gravity 0.85 is flowing. The pressure difference between the entry is measured by a U-tube manometer containing mercury (Sp gr=13.6) and the deflection of the manometer is 0.60 m . Calculate the discharge. Assume Coefficient $(\mathrm{C})=0.97$.
(c) Water flows through a 200 mm diameter pipe fitted with a 100 mm diameter horizontal orifice meter at the rate of $0.015 \mathrm{~m}^{3} / \mathrm{s}$. Determine the difference of pressure head between the upstream and the veena contracta. Take $C=0.61$.
4. Answer any two of the following :
$7 \times 2=14$
(a) A pipe carrying water suddenly enlarges from a diameter 40 cm to 60 cm . If the discharge is 0.615 cumecs. Calculate the loss of head due to sudden enlargement.
(b) A rectangular channel has a base width of 2.5 m and a slope of 1 is 400 . Find the depth of flow, if the discharge is $10 \mathrm{~m}^{3}$. Use Chezy's formula. Take $C=50$.
(c) A 60 mm diameter orifice is discharging water under a head of 9 meters. Calculate the actual discharge in litres per second and actual velocity of jet is meters per second at veena contracta, if $\mathrm{Cd}=0.6$ and $\mathrm{Cv}=0.9$.
5. Write short notes on any four of the following :
(a) Be $3^{1 / 2} \times 4=14$
(a) Bernaullis' equation and its limitations.
(b) Submerged Orifice
(c) Rynold's experiment on flow through pipes.
(d) Energy Gradient Line (EGL)
(e) Orifice meter
(f) External mouthpiece
