Diploma in Civil Engineering (DCLE(G) Diploma in Mechanical Engineering (DME) DCLEVI/DMEVI/DELVI/DECVI/DCSVI/ ACCLEVI/ACMEVI/ACELVI/ACECVI/ACCSVI

Term-End Examination
December, 2012

BET-021 : MATHEMATICS-II

Time : $\mathbf{2}$ hours
Maximum Marks : 70
Note: Question No. 1 is compulsory. Attempt any four questions out of the remaining questions no. 2 to 7: Use of calculator is permitted.

1. (a) Select the correct answer : $7 \times 1=7$
(i) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$ is equal to :
(A) 1
(B) 2
(C) 3
(D) 0
(ii) If $f(x)=x^{\mathrm{n}}$ and $f^{\prime}(1)=10$ then value of n is :
(A) 1
(B) 0
(C) 10
(D) None of these
(iii) $\int x^{1 / 2} d x$ is equal to :
(A) $\frac{2}{3} x^{3 / 2}+C$
(B) $\frac{2}{3} x^{2 / 3}+C$
(C) $x^{3 / 2}+\mathrm{C}$
(D) $\frac{1}{2} x^{3 / 2}+\mathrm{C}$
(iv) $\int_{4}^{5} \mathrm{e}^{-x} d x$ is equal to :
(A) $\mathrm{e}^{-5}-\mathrm{e}^{-4}$
(B) $e^{-4}-e^{-5}$
(C) $e^{5}-e^{4}$
(D) $e^{4}-e^{5}$
(v) $1+i^{2}+i^{4}+i^{6}+\ldots+i^{2 \mathrm{n}}$ is :
(A) Positive
(B) Negative
(C) 0
(D) Cannot be determined.
(vi) If $X+Y=\left[\begin{array}{ll}7 & 0 \\ 2 & 5\end{array}\right] \quad$ and $X-Y=\left[\begin{array}{ll}3 & 0 \\ 0 & 3\end{array}\right]$ then X is equal to :
(A) $\left[\begin{array}{ll}4 & 0 \\ 1 & 5\end{array}\right]$
(B) $\left[\begin{array}{ll}5 & 1 \\ 0 & 4\end{array}\right]$
(C) $\left[\begin{array}{ll}5 & 0 \\ 1 & 4\end{array}\right]$
(D) $\left[\begin{array}{ll}5 & 4 \\ 1 & 0\end{array}\right]$
(vii) $\left|\frac{3+2 i}{3-(1-i)^{2}}\right|$ is equal to:
(A) 5
(B) $1+i$
(C) $1-i$
(D) I
(b) Fill in the blanks :
$7 \times 1=7$
(i) Let $\mathrm{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ then $\mathrm{A}-\mathrm{A}^{\prime}$ is equal
to \qquad .
(ii) $\lim _{2 x \rightarrow 0} \frac{e^{2 x}-1}{3 x} \quad$ is equal to \qquad .
(iii) $(1+i)^{5}\left(1+\frac{1}{i}\right)^{5}=$ \qquad .
(iv) $\int\left(x+\frac{1}{x}\right) d x=$ \qquad .
(v) A particle moves in a line at $t=2.25$
seconds so that $s=\sin \frac{t}{9}$. If its position
S is in meters and time t is in seconds then velocity is \qquad .
(vi) The median of $2,3,3,4,6,7$, is
\qquad .
(vii) The absolute minimum value of $x^{4}-x^{2}-2 x+5$ is \qquad .
2. (a) Differentiate $\frac{1}{a x^{2}+b x+c}$ with respect $7+7$ to x.
(b) Find the maximum and minimum values of $f(x)=x^{3}-12 x^{2}+36 x+17$ in $1 \leq x \leq 10$.
3. (a) Evaluate $\int x^{3} \log 2 x d x$.
(b) Evaluate $\int_{-\pi / 2}^{\pi / 2}\left(\cos x+x^{5} \sin ^{4} x\right) d x$.
4. (a) If $x+i y=\sqrt{\frac{a+i b}{c+i d}}$, prove that $7+7$

$$
\left(x^{2}+y^{2}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}
$$

(b) If $\mathrm{Zr}=\operatorname{Cos}\left(\pi / 3^{r}\right)+i \sin \left(\pi / 3^{r}\right)$.

$$
\mathrm{r}=1,2,3 \ldots \ldots \text { then prove that } z_{1}, z_{2}, z_{3} \ldots=i
$$

5.

$$
\begin{aligned}
& \text { (a) Show that the functi } \\
& f(x)=\left\lvert\, \begin{array}{ll}
x \sin \frac{1}{x}, & \text { when } x \neq 0 \\
0, & \text { when } x=0
\end{array}\right.
\end{aligned}
$$ is continuous at $x=0$.

(b) Solve the system of equations:

$$
\begin{aligned}
& 6 x+y-3 z=5 \\
& x+3 y-2 z=5 \\
& 2 x+y+4 z=8
\end{aligned}
$$

6. (a) Find the mean and standard deviation of $7+7$ the following data :

Classes	Frequency
$120-130$	2
$130-140$	5
$140-150$	25
$150-160$	10
$160-170$	8

(b) Find the median of the following data : $12,18,16,21,10,13,17,19$
7. (a) Find the inverse of the matrix: $\left[\begin{array}{lll}1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4\end{array}\right] \quad 7+7$
(b) Evaluate the determinant of : $\left[\begin{array}{ccc}x+y & y+3 & 3+x \\ 3 & x & y \\ 1 & 1 & 1\end{array}\right]$

