DIPLOMA IN CIVIL ENGINEERING (DCLE(G)) /DIPLOMA IN MECHANICAL ENGINEERING
 DCLEVI/DMEVI/DELVI/DECVI/DCSVI/ ACCLEVI/ACMEVI/ACELVI/ACECVI/ACCSVI

Term-End Examination December, 2012

BET-011 : MATHEMATICS-I
Time : $\mathbf{2}$ hours
Maximum Marks : 70
Note: Question No. 1 is compulsory. Attempt any four more questions out of the remaining questions. Use of calculator is permitted.

1. Answer any seven of the following :
(a) Express $3.4 \sqrt{5}$ as a pure surd.
(b) Find the characteristics and mantissa of a number whose logarithm is 3.0784 and $\overline{3} .0784$.
(c) Find the value of k such that both the equations $x^{2}+\mathrm{k} x+64=0$ and $x^{2}-8 x+\mathrm{k}=0$ have real roots.
(d) Insert 4 Geometric means between 3 and 96 .
(e) Find the $10^{\text {th }}$ term of the A.P. $-40,-15,10,35, \ldots \ldots . .$.
(f) What is the meaning of the following box in a flow chart?

(g) Prove that:

$$
\sin A=\frac{2 \tan \frac{A}{2}}{1+\tan ^{2} \frac{A}{2}}
$$

(h) Find the perpendicular distance of the point $(4,1)$ from the line $3 x-4 y+12=0$.
(i) Find the equation of the tangent to the circle $x^{2}+y^{2}=9$ at $(3,0)$.
(j) Find a unit vector perpendicular to the vectors \vec{i} and \vec{j}.
2. (a) Evaluate the following without using the tables:

4, 4, 6

$$
\frac{\cos 70^{\circ}}{\sin 20^{\circ}}+\frac{\cos 55^{\circ} \operatorname{cosec} 35^{\circ}}{\tan 5^{\circ} \tan 85^{\circ} \tan 45^{\circ}}
$$

(b) Prove that :
$\frac{\sin \theta}{1-\cos \theta}=\operatorname{cosec} \theta+\cot \theta$
(c) The horizontal distance between two towers is 140 m . The angle of elevation of the top of the first tower when seen from the top of the second tower is 30°.

If the height of the second tower is 60 m , find the height of the first tower.
3. (a) The sum of three consecutive numbers in A.P. is 18 and there product is 192 . Find the numbers.
(b) Using bionomial theorem, evaluate (99) ${ }^{5}$.
(c) Simplify the surd

$$
\frac{4}{2+\sqrt{3}+\sqrt{7}}
$$

4. (a) Find the equation of a line which passes through the point $(2,2)$ and the sum of the intercepts on the axis is 9 .
(b) Find the equation of a circle which is concentric with the circle :
$x^{2}+y^{2}-4 x+6 y-3=0$ and which passes through the point $(5,-2)$.
(c) If A and B are two points $(3,4)$ and $(5,-2)$, find the point P such that $\mathrm{PA}=\mathrm{PB}$ and area of the triangle $\mathrm{PAB}=10$.
5. (a) Find the equation of a parabola whose focus is $(1,1)$ and the directrix is $x+y+1=0 . \quad \mathbf{5 , 5 , 4}$
(b) Find the centre, eccentricity and foci of the ellipse $x^{2}+2 y^{2}-2 x+12 y+10=0$.
(c) Solve the triangle $A B C$ given
$a=152 \mathrm{~cm}, B=53^{\circ}, A=80^{\circ}$.
6. (a) Show that the points :
$A(2 \vec{i}+4 \vec{j}+\vec{k}), \quad B(4 \vec{i}+5 \vec{j}+\vec{k})$
and $C(3 \vec{i}+6 \vec{j}-3 \vec{k})$ form a right angled triangle.
(b) Find a unit vector perpendicular to both the vectors $\vec{A}=2 \vec{i}+\vec{j}-\vec{k}$ and $\vec{B}=\vec{i}-\vec{j}+2 \vec{k}$
(c) A particle acted by constant forces (4, 1, -3) and $(3,1,-1)$ is displaced from the point $A(1,2,3)$ to the point $B(5,4,1)$. Find the work done by the forces on the particle.
