No. of Printed Pages : 3

BIME-006

	B.Tech. MECHANICAL ENGINEERING (BTMEVI)	
1571	Term-End Examination December, 2012 BIME-006 : THERMOFLUID ENGINEERING	
Tim		
<i>Note</i> : Attempt <i>any seven</i> questions. All questions carry <i>equal</i> marks. Question No. 10 is compulsory. Use of calculator is <i>allowed</i> .		
1.	Define velocity potential function and list out its properties. What is relationship between stream function and velocity potential function ?	10
2.	A pipe 25 cm. in diameter carrying water branches into two pipes of 10 cm and 20 cm in diameters. The water velocity in 25 cm pipe is 2 m/sec. Find the quantity of water flowing through this pipe. Also find out the velocity of water in 10 cm pipe if the velocity in 20 cm pipe is 1.5 m/s.	10
3.	Define linear momentum and angular momentum and list out practical applications of each.	10
4.	What do you understand by Reynold's number ? Derive the relationship between shear stress and pressure gradient.	10

BIME-006

- Name the minor and major losses during the flow 10 of liquid through a pipe. And also deduce Chezy's formula for the velocity of flow through a pipe.
- 6. Explain the characteristics of laminar and 10 turbulent boundary layers. Which factors affect the thickness of boundary layer ?
- 7. A pipe of 25 cm in diameter and 400 m long is 10 carrying oil whose specific gravity is 0.82 and μ is 0.0075 Poise. The oil flow rate is 100 l/sec. Find the heat lost in pipe and power required to maintain the flow.
- Prove that the maximum hydraulic efficiency of 10
 Kelton wheel is given by :

$$(\eta_{h})_{max} = \frac{1}{2} C_{v}^{2} [1 + k \cos \beta_{2}] \text{ where } k = \frac{Vr_{2}}{Vr_{1}}$$

(known as blade friction coefficient and C_v is coefficiency of velocity.)

9. For a draft tube, prove that the pressure head at 10 the inlet of turbine is given by :

$$\frac{P_2}{w} = \left(\frac{P_a}{w} - H_d\right) - \left(\frac{V_2^2 - V_3^2}{2g} - h_f\right)$$

BIME-006

Where ; $h_f = friction$ head loss. $H_d = Height$ of the draft tube. $P_a = Atmospheric$ pressure V_2 and $V_3 = Velocities$ at inlet and outlet. $P_2 = Pressure$ head at inlet.

10. Write short notes on *any two* :

5x2=10

- (a) Cavitation in turbines
- (b) Momentum Equation
- (c) Propagation of shock wave
- (d) Isentropic flow through nozzle

BIME-006