B.Tech. MECHANICAL ENGINEERING (BTMEVI)

π
N
0
Term-End Examination
December, 2012
BIME-006 : THERMOFLUID ENGINEERING
Time : 3 hours Maximum Marks: 70
Note : Attempt any seven questions. All questions carry equal marks. Question No. 10 is compulsory. Use of calculator is allowed.
$\begin{array}{lll}\text { 1. Define velocity potential function and list out its } & 10 \\ \text { properties. What is relationship between stream } \\ \text { function and velocity potential function? }\end{array}$
2. A pipe 25 cm . in diameter carrying water branches 10 into two pipes of 10 cm and 20 cm in diameters. The water velocity in 25 cm pipe is $2 \mathrm{~m} / \mathrm{sec}$. Find the quantity of water flowing through this pipe. Also find out the velocity of water in 10 cm pipe if the velocity in 20 cm pipe is $1.5 \mathrm{~m} / \mathrm{s}$.
$\begin{array}{lll}\text { 3. Define linear momentum and angular momentum } & \mathbf{1 0} \\ \text { and list out practical applications of each. }\end{array}$
4. What do you understand by Reynold's number? 10

Derive the relationship between shear stress and pressure gradient.
5. Name the minor and major losses during the flow of liquid through a pipe. And also deduce Chezy's formula for the velocity of flow through a pipe.
6. Explain the characteristics of laminar and $\mathbf{1 0}$ turbulent boundary layers. Which factors affect the thickness of boundary layer ?
7. A pipe of 25 cm in diameter and 400 m long is 10 carrying oil whose specific gravity is 0.82 and μ is 0.0075 Poise. The oil flow rate is $100 \mathrm{l} / \mathrm{sec}$. Find the heat lost in pipe and power required to maintain the flow.
8. Prove that the maximum hydraulic efficiency of Kelton wheel is given by :

$$
\left(\eta_{\mathrm{h}}\right)_{\max }=\frac{1}{2} C_{\mathrm{v}}^{2}\left[1+\mathrm{k} \cos \beta_{2}\right] \text { where } \mathrm{k}=\frac{\mathrm{Vr}_{2}}{\mathrm{Vr}_{1}}
$$

(known as blade friction coefficient and C_{v} is coefficiency of velocity.)
9. For a draft tube, prove that the pressure head at $\mathbf{1 0}$ the inlet of turbine is given by :

$$
\frac{P_{2}}{w}=\left(\frac{\mathrm{P}_{\mathrm{a}}}{\mathrm{w}}-\mathrm{H}_{\mathrm{d}}\right)-\left(\frac{\mathrm{V}_{2}^{2}-\mathrm{V}_{3}^{2}}{2 \mathrm{~g}}-\mathrm{h}_{\mathrm{f}}\right)
$$

Where ;
$\mathrm{h}_{\mathrm{f}}=$ friction head loss.
$H_{d}=$ Height of the draft tube.
$\mathrm{P}_{\mathrm{a}}=$ Atmospheric pressure
V_{2} and $V_{3}=$ Velocities at inlet and outlet.
$P_{2}=$ Pressure head at inlet.
10. Write short notes on any two :
$5 \times 2=10$
(a) Cavitation in turbines
(b) Momentum Equation
(c) Propagation of shock wave
(d) Isentropic flow through nozzle

