No. of Printed Pages : 4

BME-009

BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING) OBTCLEVI/BTMEVI/BTECVI/BTELVI/BTCSVI

Term-End Examination

December, 2012

BME-009 : COMPUTER PROGRAMMING AND APPLICATION

Time : 3 hours

Maximum Marks : 70

Note : Attempt any five questions. All questions carry equal marks. Use of scientific calculator is permitted.

1.	(a)	If 0.333 is the approximate value of $\frac{1}{3}$, fin	d
	(b)	absolute, relative and percentage errors. Find the real positive root of $3x - \cos x - 1 = 0$ by Newton - Raphson method correct to si	2x7=14 x
		decimal places.	
2.	(a)	Use Crout's method to solve the followin simultaneous equations. x + y + z = 3 2x - y + 3z = 16 3x + y - z = -3.	g 2x7=14

BME-009

(b) Solve the following equations using the Gauss' elimination method.

```
2x_1 + x_2 + x_3 = 10

3x_1 + 2x_2 + 3x_3 = 18

x_1 + 4x_2 + 9x_3 = 16
```

3. (a) Use Jacobi's iteration method, to solve the following systems of equations. 2x7=14

$$20x + y - 2z = 17$$

$$3x + 20y - z = -18$$

$$2x - 3y + 20z = 25.$$

(b) Using Regula-Falsi method, compute the real root of the equation

 $xe^x = 2$

in (0.8, 0.9) correct to five decimal places.

(a) Use Lagrange's interpolation formula to compute f(4) from the following data : 2x7=14

x :	1	2	3	5
y:	0	7	26	124

(b) Evaluate
$$\int_{0}^{1} \frac{1}{1+x^{2}} dx$$
 with $h = \frac{1}{6}$ by

(i) Trapezoidal rule

(ii) Simpson's $\frac{1}{3^{rd}}$ rule. Hence compute the value of π .

BME-009

(a) What are the output of following two 5. 2x7 = 14codes fragments ? Justify your answer. // Version 2 // Version 1 int f = 1, i = 2; int f = 1, i = 2; while (t + i < = < 5) do { $f^* = i$; $f^* = i;$ } while (+ + i < 5); cout < < f;cout < < f; : What is the difference between global (b) variable and local variable ? Give an example to illustrate the same. Write a C^{++} program to sum the sequence 6. (a) 2x7 = 14 $sum = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{100!}$ (b) What are Nested structures ? Give an example. 7. (a) Identify and explain the error(s) in the following code fragment : 2x7 = 14float a [] = {11.02, 12.13, 19.11, 17.41}; float *J, *k ; j=a; k = a + 4; $i = i^{2};$ k = k/2; cout <<"j=" <<*j<", *k="<<k<<"\n"> : **BME-009** P.T.O. 3

```
Give the output of the following program ;
(b)
     # include < iostream .h >
     Struct Point
     { int X, Y ;
     };
     void show (Point P)
     cout << P.X << ':' << P.Y << end |;
      ł
     void main ()
      ł
           Point U = \{20, 10\}, V, W, ;
           V = U;
           V.X + = 20:
           W = V
           U.Y + = 10;
           U.X + = 5;
           W.X - = 5:
           Show (U);
           Show (V);
           Show (W);
     }
```

- 8. (a) Write a C⁺⁺ program to input a number. If the number is even, print its square otherwise print its cube. 2x7=14
 - (b) Write a C⁺⁺ program to calculate area of a circle, a rectangle or a triangle depending upon user's choice.

BME-009

4