BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED MANUFACTURING)

Term-End Examination

December, 2012

BME-002 : COMPUTER AIDED DESIGN

Time : 3 hours
Maximum Marks : 70
Note: Attempt any seven questions. Use of calculator is allowed. Drawing of the diagram is compulsory. Wherever instructed in the numerical question.

1. What is the function of digital to analog10 converter? What do you understand by the term "aliasing" or jaggies? What do you understand by the term line drawing device? Give examples and support your answer with diagram.
2. Briefly explain with the help of example and $\mathbf{1 0}$ drawing atleast one of the following :
(a) Locator device
(b) Pick device
3. A unit square is transformed by a 2×2 10 transformation matrix. The resulting position vectors are
$\left[\begin{array}{ll}0 & 0 \\ 2 & 3 \\ 8 & 4 \\ 6 & 1\end{array}\right]$

What was the transformation matrix ?
4. Scale the triangle with position vertices $x(0,0), \quad 10$ $y(2,2)$ and $z(5,0)$ to double its size.
5. Write down the general transformation matrix for
a three point perspective transformation and explain with help of a diagram to show the various points like centre of projection, vanishing point etc.
6. Write an Algorithm for Back Face Detection 10
Method. Support your answer with the help of
diagrams.
7. Explain in Brief. "Diffuse Illumination". Support 10
your answer with the help of diagram.
8. For the position vectors $P_{1}\left[\begin{array}{ll}2 & 4\end{array}\right]$ and $P_{2}\left[\begin{array}{ll}8 & 6\end{array}\right], 10$ determine the parametric representation of the line segment between them. Also determine the slope and tangent vector of the line segment.
9. Calculate the mid-point of Hermit Cubic Curve $\mathbf{1 0}$ defined by the following points

$$
\begin{array}{ll}
\mathrm{V}_{0}=[1,2] & \mathrm{V}_{0}^{\prime}(0)=[0,4] \\
\mathrm{V}_{1}(1)=[8,10] & \mathrm{V}_{1}^{\prime}=[4,0]
\end{array}
$$

10. Fit a Bezier curve with the following control 10 points.

$$
P_{0}(1,1) P_{1}(2,2) P_{2}(3,1) \text { and } P_{3}(4,0)
$$

