BACHELOR OF TECHNOLOGY IN MECHANICAL ENGINEERING (COMPUTER INTEGRATED
 MANUFACTURING) 02688

Term-End Examination
December, 2012

BME-001 : ENGINEERING MATHEMATICS-I

Time: 3 hours
Maximum Marks : 70
Note: All questions are compulsory. Use of statistical tables and calculator is permitted.

1. Answer any five of the following :
$5 \times 4=20$
(a) Evaluate any one of the following limits:
(i) $\lim _{x \rightarrow 0} \frac{x \mathrm{e}^{x}-\log (1+x)}{x^{2}}$
(ii) $\lim _{x \rightarrow 1} x^{\frac{1}{1-x}}$
(b) If $x^{y}=\mathrm{e}^{x-y}$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$
(c) If $u=\sin ^{-1} \frac{x}{y}+\tan ^{-1} \frac{y}{x}$;
show that $x \frac{\partial \mathbf{u}}{\partial x}+y \frac{\partial u}{\partial y}=0$
(d) Show that $v=\frac{A}{\gamma}+B_{\text {is solution of the }}$ differential equation $\frac{d^{2} v}{d \gamma^{2}}+\frac{2}{\gamma} \frac{d v}{d \gamma}=0$.
(e) Solve (any one of the following) :
(i) $\left(x^{2}+y^{2}\right) \mathrm{d} y=x y \mathrm{~d} x$
(ii) $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{y}{x}=\sin x^{2}$.
(f) If $u=\frac{y z}{x}, v=\frac{z x}{y} ; w=\frac{x y}{z}$,
show that $\frac{\partial(u, v, w)}{\partial(x, y, z)}=4$.
2. Answer any four of the following:
$4 \times 4=16$
(a) Calculate the total work done in moving a particle in a force field given by

$$
\begin{aligned}
& \mathrm{F}=3 x y \hat{i}-5 z \hat{j}+10 x \hat{\mathrm{k}} \text { along the curve } \\
& x=\mathrm{t}^{2}+1, y=2 \mathrm{t}^{2}, z=\mathrm{t}^{3} \text { from } \mathrm{t}=1 \text { to } \mathrm{t}=2 .
\end{aligned}
$$

(b) Show that $\mathrm{F}=\left(2 x y+z^{3}\right) \hat{i}+x^{2} \hat{j}+3 x z^{2} \hat{\mathrm{k}}$ is a conservative force field. Find the scalar potential. Find also the work done in moving out an object in the field from $(1,-2,1)$ to $(3,1,4)$.
(c) Verify the Divergence Theorem for the vector function

$$
\mathrm{F}=\left(x^{2}-y z\right) \hat{i}+\left(y^{2}-z x\right) \hat{j}+\left(z^{2}-x y\right) \hat{k} \text { taken }
$$

over the rectangular parallelopiped $0 \leq x \leq \mathrm{a}, 0 \leq y \leq \mathrm{b}, 0 \leq z \leq \mathrm{c}$.
(d) If $\mathrm{A}=x z^{3} \hat{i}-2 x^{2} y z \hat{j}+2 y z^{4} \hat{k}$, find $\nabla \times \mathrm{A}$ (or curl A$)$ at the point $(1,-1,1)$.
(e) Find constants a, b, c so that
$\mathrm{V}=(x+2 y+\mathrm{a} z) \hat{i}+(\mathrm{b} x-3 y-z) \hat{j}+(4 x+\mathrm{c} y+2 \mathrm{z}) \hat{k}$
is irrotational.
(f) If $\phi=3 x^{2} z-y^{2} z^{3}+4 x^{3} y+2 x-3 y-5$. find $\nabla^{2} \phi$.
3. Answer any six of the following :
(a) If $\mathrm{A}=\left[\begin{array}{ll}2 & 5 \\ 3 & 1\end{array}\right]$ show that $\mathrm{A}^{2}-3 \mathrm{~A}-13 \mathrm{I}=0$ where I and 0 are unit and zero (2×2) matrices respectively.
(c) If 20% of the bolts produced by a machine are defective, determine the probability that out of 4 bolts chosen at random
(i) 1
(ii) 0
(iii) at most 2
bolts will be defective.
(d) Assume that the probability of an individual coal miner being killed in a mine accident during a year is $1 / 2400$. Use Poisson distribution, to calculate the probability that in a mine employing 200 miners, there will be at least one fatal accident in a year.
(e) A random sample of 10 boys had the following
IQ : 70, 120, 110, 101, 88, 83, 95, 98, 107, 100.

Do these data support the assumption of a population mean IQ of 100 (at 5% level of significance) ?
(f) A certain number of articles manufactured in one batch were classified into three categories according to a particular characteristics, being less than 50 , between 50 and 60 and greater than 60 . If this characteristics is known to be normally distributed, determine the mean and standard deviation for the batch if $60 \%, 35 \%$ and 5% were found in these categories.
(b) Obtain the rank of the following matrix :

$$
A=\left[\begin{array}{ccc}
1 & 3 & 2 \\
2 & 0 & -1 \\
3 & 2 & 3
\end{array}\right]
$$

(c) Find the eigen values of the following matrix :

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]
$$

(d) Using Cayley-Hamilton theorem, find the inverse of $A=\left[\begin{array}{ll}5 & 3 \\ 3 & 2\end{array}\right]$.
(e) Show that $\mathrm{A}=\left[\begin{array}{ccc}3 & 7-4 \hat{i} & -2+5 \hat{i} \\ 7+4 \hat{i} & -2 & 3+\hat{i} \\ -2-5 \hat{i} & 3-i & 4\end{array}\right]$ is a Hermitian matrix.
(f) Given $\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & 5 \\ -1 & 3 & -4\end{array}\right]$ and

$$
B=\left[\begin{array}{ccc}
3 & -2 & 1 \\
0 & -1 & 4 \\
5 & 2 & -1
\end{array}\right]
$$

Find where possible $A+B, A-B, A B$ and $B A$, stating the reasons where the operations are not possible.
(g) Prove without expanding the determinant of

$$
\left|\begin{array}{lll}
1 & a & a^{2}-b c \\
1 & b & b^{2}-c a \\
1 & c & c^{2}-a b
\end{array}\right|=0
$$

(h) Solve by Cramer's rule

$$
\begin{aligned}
2 x-z & =1 \\
2 x+4 y-z & =1 \\
x-8 y-3 z & =-2 .
\end{aligned}
$$

4. Answer any two of the following :
(a) An urn contain 10 balls of which three are black and seven are white. At each trial, a ball is selected at random, its colour is noted and it is replaced by two additional balls of the same colour.
What is the probability that a white ball is selected in the second trial ?
(b) A factory manufacturing televisions has four units $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D . The units $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ manufacture $15 \%, 20 \%, 30 \%$ and 35% of the total output respectively. It was found that out of their output $1 \%, 2 \%, 2 \%$ and 3% are defective. A television is chosen at random from the total output and found to be defective. What is the probability that it came from the unit D ?
