B.Tech. IN ELECTRICAL ENGINEERING

Term-End Examination

December, 2012

BIEE-021 : CONTROL SYSTEM

Time : 3 hours
Maximum Marks : 70
Note: Attempt any five question. Each question carry equal marks. Use graph.

1. (a) For the given network find the transfer function $I_{2}(s) / V(s)$.

(b) Obtain differential equations describing the mechanical system shown in figure and draw the electric network using forcevoltage analogy.

2. Define the mason's gain formula. Find the gain of the system shown in figure.

3. (a) The control system having unity feedback 10 has $G(s)=\frac{20}{S(1+4 S)(1+S)}$.

Determine
(i) Different error coefficient
(ii) Steady state error if input is $r(t)=2+4 t+t^{2} / 2$.
(b) Define the specifications of time domain 4 response.
4. The system shown in figure is a unity feedback control system with minor rate feedback crop.
(a) In absence of rate feedback $(\alpha=0)$ determine overshoot of the system to unit step input and steady state error resulting from a unit ramp input.
(b) Determine the α which will decrease the peak overshoot of system, to unit step input, to 15%. What is e_{ss} to unit ramp input with this settling of the rate of feedback constant?

5. (a) A unity feed back control system has

$$
G(s)=\frac{K}{S\left(S^{2}+4 S+5\right)(S+2)} \cdot \text { Determine }
$$

the range of K so that system is stable.
(b) The open loop transfer function of a unity 10 feedback control system

$$
G(s) H(s)=\frac{K}{S(S+2)(S+5)} \quad \text { sketch the }
$$

root locus of the system and determine the value of k for.
(i) Critical damping
(ii) Marginal Stability from the root locus.
6. (a) Sketch the Nyquist plot for 10 $G(s)=1 / s^{3}(S-1)$ also comment on stability.
(b) Explain the gain margin and phase margin. 4
7. Find Transfer function of :

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1}^{\circ} \\
x_{2}^{\circ}
\end{array}\right]=\left[\begin{array}{cc}
-5 & -1 \\
3 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
2 \\
5
\end{array}\right] \mathrm{r}(\mathrm{t})} \\
& y=[12]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
\end{aligned}
$$

8. Write short note on any two of the following : $2 \times 7=14$
(a) DC and AC servomotor
(b) Different types of Controllers
(c) Routh - Hurwitz criterion
