00801
B.TECH. - ELECTRICAL ENGINEERING
Term-End Examination
December, 2012
BIEE-017 : DIGITAL ELECTRONICS

Time : 3 hours
Maximum Marks : 70
Note: Attempt any seven questions from question no 1 to 10.

1. (a) Explain the working of full - Adder. Draw its truth table.
(b) Execute the following program according2 to Intel 8085 instructions.
$\mathrm{L} \times 1 \quad \mathrm{H}, 2000 \mathrm{H}$
MOV B, M
HLT
2. Describe the Architecture of Intel $8086 \mathbf{1 0}$ Microprocessor.
3. Describe the registers of Intel $8085 \mathbf{1 0}$ Microprocessor.
4. (a) Write an assembly language program starting from memory location 2400 H to subtract digital number 48 stored in memory location 2421 H from decimal number 99 stored in memory location 2420 H . The answer should be in decimal numbers and stored in memory location 2422 H .
(b) Explain REP Prefix and Segment Override Prefix.
5. Explain the following assembler directives $\mathbf{1 0}$
(a) DB
(b) DW
(c) DD
(d) EQU
(e) END
6. What is an Interrupt ? Differentiate between

Vectored interrupt and the nonvectored interrupt.
Draw a possible vectored interrupt configuration.
7. (a) Explain 4-bit synchronous binary counter.
(b) Explain 4 bit up - down binary counter.

5
8. (a) How many flip-flops must be complemented 3 in a 10-bit binary ripple - counter to reach the next count after 0111111111 ?
(b) Construct a Johnson - counter with ten timing signals.
9. (a) Explain the 4-bit Bidirectional Shift Register with Parallel Load. Write it's function table also.
(b) Draw the logic diagram (showing all gates) of a master - slave D flip - flop. Use NAND gates.
10. (a) Design a sequential circuit with JK flip flops 5 to satisfy the following state equations:
$\mathrm{A}(\mathrm{t}+1)=\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{CD}+\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{ACD}+\mathrm{AC}^{\prime} \mathrm{D}^{\prime}$
$\mathrm{B}(\mathrm{t}+1)=\mathrm{A}^{\prime} \mathrm{C}+\mathrm{CD}^{\prime}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}$
$C(t+1)=B$
$D(t+1)+D^{\prime}$
(b) Design a BCD - to - decimal decoder.

