B.Tech. ELECTRONICS
 ENGINEERING - III
 (BTCVI/BTECVI/BTELVI)
 Term-End Examination

December, 2012

BIEE-001 : BASICS OF ELECTRICAL ENGINEERING

Time : 3 hours

Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is allowed. All the questions are to be answered in English Language only.

1. (a) Explain star-delta transformation and vice-versa.

$$
2 \times 5=10
$$

(b) Find the voltage across 6Ω resistor for the circuit shown in figure (1).

Figure (1)
2. (a) State and explain Thevenin's Theorem and write its limitations and applications. $2 \times 5=10$
(b) Find the Norton equivalent circuit of the circuit shown in figure (2) at terminal $a-b$.

Figure - (2)
3. (a) What is the difference between primary and secondary cell? $2 \times 5=10$
(b) Explain the construction and working of silver oxide cell.
4. (a) Draw and explain hysteresis loop. What is its significance?
$2 \times 5=10$
(b) Derive an expression for the force experienced by current carrying conductor placed in a uniform magnetic field.
5. (a) Explain the self inductance and mutual inductance.
(b) State and explain Faraday's law of electromagnetic induction.
6. Show that the condition for resonance in a parallel $\mathbf{1 0}$ R-L-C circuit is same as that in a series R-L-C circuit. State the application of series as well as parallel resonance.
7. The following figure (3) shows a series - parallel $\mathbf{1 0}$ circuit. Find :
(a) Admittance of each parallel branch
(b) Total circuit impedance
(c) Supply current and power factor
(d) Total power supplied by the source

Fig. (3)
8. A balanced delta-connected load of impedance 10 $(16+\mathrm{J} 12) \Omega$ per phase is connected to a 3-phase 400 V supply. Find the phase current, line current, power factor, reactive power and total power.
9. Explain two wattmeter method to determine 10 power in three-phase system.
10. Write short notes on any two of the following : $2 \times 5=10$
(a) Superposition Theorem
(b) Polyphase system
(c) Difference between DC and AC.

