	B. Tech. ELECTRONICS AND
\sim	COMMUNICATION ENGINEERING (BTECVI)
10	Term-End Examination
10	December, 2012

1. (a) Define the effective length and effective 4 aperture of antenna.
(b) Derive relationship between effective length 6 and effective aperture.
2. (a) Derive relationship between directivity and 6 beam solid angle of antenna.
(b) Calculate gain of antenna if $\mathrm{f}=50 \mathrm{MHz}$, 4 $\mathrm{Ae}=10.00 \mathrm{~m}^{2}$
3. (a) What is pattern multiplication theorem ? 5
(b) Calculate directivity of end fire array 5 if $f=100 \mathrm{MHz}$, separation between elements $=50 \mathrm{~cm}$, Numbers of elements is 5 .
4. (a) What are the advantages of folded dipole over linear dipole?
(b) Derive formulas of electric and magnetic 7 field components of linear dipole.
5. (a) What do you mean by radiation resistance 4 and directivity?
(b) Write the formula for field components of 6 short dipole.
6. (a) Derive the formula for gain of the corner 5 reflector antenna.
(b) Write the advantages, disadvantages and 5 applications of lens antenna.
7. (a) Explain working principle of Helical 5 antenna.
(b) Calculate the bandwidth of Log periodic 5 Directional Antennas if
length of first element $=10 \mathrm{~cm}$,
Number of elements $=5$
Design ratio $(\tau)=0.5$,
and Apex angle $(\alpha)=60^{\circ}$.
8. (a) What are the different wave propagation methods?
(b) Derive the formula for electric field 6 component of the ground wave.
9. (a) Derive formula for range of space wave. 6
(b) Calculate the range of space wave if 4 Height of Transmitting Antenna is 25 m , Height of Receiving Antenna is 16 m and (Frequency) f is 50 MHz for standard form of refraction.
10. Attempt any two of followings :
(a) Tropospheric scatter
(b) Refractive Index of troposphere.
(c) Horn antenna.
