B.Tech. ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI)
 Term-End Examination
 December, 2012
 BIEL-011 : LINEAR INTEGRATED CIRCUITS

Time: 3 Hours
Maximum Marks : 70
Note: 1. Attempt any seven questions.
2. Use of scientific calculator is allowed.

1. (a) With a neat circuit diagram, explain the 5 operation of emitter coupled differential amplifier.

(b) Explain the concept of current mirror with
5
suitable circuits.
2. (a) Differentiate between open loop and closed 5 loop configurations of OP-AMP.
(b) Draw the diagram of log amplifier using 5 OP-AMP and derive the expression for its output voltage.
3. (a) Discuss the effect of slew rate on bandwidth 5 and output impedance of an OP-AMP.
(b) Calculate the slew rate limited cut-off 5 frequency for a voltage follower circuit using a 741-OP-AMP if the peak of sine wave output is to be 10 V .
4.
(a) Explain the phase lag and phase lead frequency compensation methods, along with the circuit and frequency response curves.
(b) Find the differential mode gain of following circuit.

5. (a) Design a Butterworth low pass filter which has a cut off frequency of 1 kHz . The gain is required to drop at least -56 dB at 10 kHz .
(b) What are switched - capacitor filters ? 4 Mention their advantages.
6. Show how a band pass filter can be constructed $\mathbf{1 0}$ by the use of a low pass filter and a high pass filter. Sketch the frequency response and explain the band pass filter operation.
7. Draw the circuit diagram of sample and hold $\mathbf{1 0}$ circuit using OP-AMP IC 741. Explain its operation.
8. With a neat circuit diagram and relevant 10 waveforms, explain the operation of a triangular waveform generator which has frequency and duty cycle controls.
9. Derive equations for astable oscillator mode of 555
timer. Calculate the frequency and duty cycle for $\mathrm{R}_{\mathrm{A}}=390 \Omega, \mathrm{R}_{\mathrm{B}}=180 \Omega$ and $\mathrm{C}=6.8 \mu \mathrm{~F}$.
10. Attempt any two of followings : $2 \times 5=10$
(a) Phase shift oscillator
(b) Zero crossing detector
(c) Absolute value detector

