B.Tech. IN ELECTRONICS AND COMMUNICATION ENGINEERING (BTECVI) 00491
 Term-End Examination
 December, 2012
 BIEL-007 : SIGNALS AND SYSTEMS

Time : 3 hours
Maximum Marks : 70
Note: Attempt any seven questions.
All questions carry equal marks. Use of Scientific calculator is allowed.

All the questions are to be answered in English Language only.

1. Determine whether or not the signals below are $\mathbf{1 0}$ periodic and for each signal that is periodic, determine the fundamental period :
(a) $\quad x(t)=2 \sin \left(\frac{2}{3}\right) t+3 \cos \left(\frac{2 \pi}{5}\right) t$
(b) $\quad x(t)=\operatorname{cost}+\sin (\sqrt{2}) t$
(c) $x(\mathrm{n})=2 \sin (0.8 \pi \mathrm{n})$
(d) $x(\mathrm{n})=1+\mathrm{e}^{(\mathrm{j} 4 \pi \mathrm{n}) / 7}+\mathrm{e}^{(\mathrm{j} 2 \pi \mathrm{n}) / 5}$
(e) $x(t)=2 \cos (10 t+1)-\sin (4 t-1)$
2. (a) Compare Energy and Power signals ? Determine the condition of periodicity for continuous time signals.
(b). A continuous time signal $x(\mathrm{t})$ is shown in

Fig.1. Sketch and label each of the following signals.
(i) $x(t-2)$
(ii) $\quad x(2 t)$
(iii) $x\left(\frac{\mathrm{t}}{2}\right)$
(iv) $x(-t)$

Fig. 1
3. (a) Consider a LTI system with input and output related through the following equation

$$
y(\mathrm{t})=\int_{-\infty}^{\mathrm{t}} \mathrm{e}^{-(\mathrm{t}-\tau)} x(\tau-2) \mathrm{d} \tau
$$

What is the impulse response $h(t)$ for this system.
(b) Show that the convolution of two odd functions is an even function.
4. Determine whether the following systems are static or dynamic, Linear or non-linear. Shift variant or invariant, non-causal or causal, stable or unstable.
(a) $y(\mathrm{t})=x(\mathrm{t}+10)+x^{2}(\mathrm{t})$
(b) $y(\mathrm{n})=x(\mathrm{n}) \mathrm{u}(\mathrm{n})$
(c) $y(\mathrm{n})=\operatorname{sgn}[x(\mathrm{n})]$
(d) $y(\mathrm{n})=\operatorname{Trunc}[x(\mathrm{n})]$
(e) $y(n)=\sum_{K=-\infty}^{n+1} x(K)$
5. (a) Consider a causal LTI system with frequency 5
response $H(\omega)=\frac{1}{3+j \omega}$.
For a particular input $x(\mathrm{t})$, this system is observed to produce the output
$y(\mathrm{t})=\mathrm{e}^{-3 \mathrm{t}} \mathrm{u}(\mathrm{t})-\mathrm{e}^{-4 \mathrm{t}} \mathrm{u}(\mathrm{t})$
Determine $x(\mathrm{t})$.
(b) Find the Fourier transform of the 5 following :

$$
x(t)=\left\{\begin{array}{l}
\frac{t}{b-a}+\frac{b}{b-a}, \text { for }-b<t<-a \\
1, \text { for }-a<t<a \\
\frac{b}{b-a}+\frac{t}{b-a}, \text { for } a<t<b
\end{array}\right.
$$

6. Determine the system Transfer function $H(z)$ and 10 the frequency response of the system whose impulse response is given as
$h(n)=\left(\frac{1}{2}\right)\left[\left(\frac{1}{2}\right)^{n}+\left(-\frac{1}{4}\right)^{n}\right] u(n)$
Also locate zeros and poles in Z-plane.
7. Determine the inverse Z-Transform of the function
$X(Z)=\frac{Z-1}{Z^{2}-4 Z+4}$.
8. Find the Z-transform of the following $\mathbf{1 0}$ discrete-time signal. Also determine the ROC for each of the following cases:
(a) $\quad \mathrm{S}(\mathrm{n})=2^{\mathrm{n}} \mathrm{u}(\mathrm{n})+3\left(\frac{1}{2}\right)^{\mathrm{n}} \mathrm{u}(\mathrm{n})$
(b) $\quad \mathrm{S}(\mathrm{n})=3\left(\frac{-1}{2}\right)^{\mathrm{n}} \mathrm{u}(\mathrm{n})-2(3)^{\mathrm{n}} \mathrm{u}(-\mathrm{n}-1)$
9. For the DT system described by the following $\mathbf{1 0}$ difference equation.
$y(\mathrm{n})=0.6 y(\mathrm{n}-1)-0.08 y(\mathrm{n}-2)+x(\mathrm{n})$
Determine :
(a) The unit-sample response sequence, $h(n)$
(b) The step-response sequence $g(n)$
(c) Whether it is BIBO stable
10. Write short notes on any two : $5 \times 2=10$
(a) Classification of signals.
(b) Linear time Invariant (LTI) system.
(c) Region of Convergence (ROC).
