B.Tech. Civil (Construction Management) /

 B.Tech. Civil (Water Resources Engineering)Term-End Examination

December, 2012

ET-508(A) : STRUCTURAL DESIGN-I

Time : $\mathbf{3}$ hours
Maximum Marks : 70
Note: Attempt any four questions. All questions carry equal marks. Use of code of practice IS-456 and calculators is allowed. The answers shall be in your own language.

1. Find the moment of resistance of a beam $250 \mathrm{~mm} 17^{1 / 2}$ by 400 mm deep if it is reinforced with $3-16 \phi$ bars in tension zone at an effective cover of 40 mm as shown in figure -I. Assume M25 and Fe 415 grade steel. Use limit state method of design.

Figure - 1
2. Design a rectangular beam for an effective span $17^{1 / 2}$ of 6 m . The super imposed load is $80 \mathrm{KN} / \mathrm{m}$ and size of the beam is limited to $300 \mathrm{~mm} \times 700 \mathrm{~mm}$ overall. Use M20 mix and Fe 415 grade steel. Assume stress in compression in steel as $353 \mathrm{~N} /$ mm^{2}. Use limit state method of design.
3. Design a reinforced concrete beam subjected to a $17^{1 / 2}$ bending moment of $20 \mathrm{KN}-\mathrm{m}$. The permissible stresses in steel and concrete are $140 \mathrm{~N} / \mathrm{mm}^{2}$ and $5 \mathrm{~N} / \mathrm{mm}^{2}$ respectively. Take $\mathrm{m}=18$. Keep the depth of the beam equal to twice the width. Use werking stress method of design.
4. A reinforced concrete beam 250 mm wide and $17 \frac{1}{2}$ 400 mm effective depth is subjected to a shear force of 95 KN at the supports. The tensile reinforcement at the support is 0.5 percent. Find the spacing of 12 mm diameter 2 - legged stirrups to resist the shearing stress at supports, for M/5 concrete. Take the following values $\sigma s t=\sigma \mathrm{sc}=$ $140 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{fy}=250 \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{m}=19$. Also design the minimum reinforcement at the mid span.
5. A reinforce concrete column, 6 m long (effective) $171 / 2$ and $240 \mathrm{~mm} \times 240 \mathrm{~mm}$ in section is reinforced with four fans of 20 mm diameter. Find the safe load the column can carry. Take M25 concrete and Fe 415 steel.
6. Show that for yield line analysis of one way slabs $171 / 2$ with fixed ends having of equal moment capacities, the collapse load per unit length,

$$
\omega=\frac{24 \mathrm{M}_{\mathrm{o}}}{\angle 2}
$$

where all the terms have their usual meanings.

