No. of Printed Pages : 3

ET-302(A)

B.Tech.	Civil	(Const	ruction	Ma	nagement) /
B.Tech.	Civil	(Water	Resour	ces	Engineering)

01661) } 1	Term-End Examination December, 2012							
0) ET	ET-302(A) : COMPUTER PROGRAMMING AND NUMERICAL ANALYSIS							
	Time	:31	hours Maximum Marks	Maximum Marks : 70					
	Note		Attempt any five questions. All questions carry eq marks. Use of calculator is permitted.	jual					
	1.	(a)	Write a flow chart and a program to read 10 numbers and find out largest and smallest numbers.	7+7					
		(b)	Write a program to read two matrices A and B, check whether multiplication is possible or not ? If possible out put of the multiplication is to be printed.	-					
	2.	(a)	 Explain the difference between : (i) constant and variable (ii) function and subroutine (iii) 'If then' statement and 'If then else' statement 	7+7					
		(b)	Write a program to calculate the number of combinations of n objects taken i at a time. This number is obtained from the relation $n!/i! (n-i)!$ where $n!=1.2.3n$						

ET-302(A)

- 3. (a) Write format command for :
 - (i) Integer data
 - (ii) Real numerical data
 - (iii) Literal data
 - (iv) Double precision data
 - (b) Define Round off error and truncation error. Calculate a bound for the truncation error in approximating e^{x^2} by

$$1 + x^2 + \frac{x^4}{2!} + \frac{x^6}{3!} + \frac{x^8}{4!}$$
 for $x \in]-1, 1[$.

- 4. (a) Find a real root of $x^3 x = 1$ between 1 and 7+7 2 by Bisection method. Compute five iterations.
 - (b) Find a positive value of $(17)^{\frac{1}{3}}$ correct to four decimal places by Newton-Raphson method.
- (a) Assuming that the following values of y 7+7 belong to a polynomial of degree 4, compute the next three values :

					3				
y	:	1	-1	1	-1	1	-	-	-

(b) Prove that :

$$\Delta + \nabla = \frac{\Delta}{\nabla} - \frac{\nabla}{\Delta}$$

ET-302(A)

- 6. (a) Obtain the LV decomposition of the matrix 7+7
 - $\begin{bmatrix} 2 & -6 & 10 \\ 1 & 5 & 1 \\ -1 & 15 & -5 \end{bmatrix}$
 - (b) Find $\frac{dy}{dx}$ at x = 0.1 from the table :
 - x: 0.1 0.2 0.3 0.4y: 0.9975 0.9900 0.9776 0.9604
- 7. (a) Find from the following table, the area 7+7 bounded by the curve and the x – axis from x = 7.47 to x = 7.52
 - x; 7.47 7.48 7.49 7.50 7.51 7.52 y: 1.93 1.95 1.98 2.01 2.03 2.06
 - (b) Use the Runge Kutta method of fourth order to approximate *y* when x = 0.1 given that y=1 at x=0

and
$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x + y^2$$

8. Explain the following :

 $4x3^{1/2}=14$

- (a) Convergence of Newton Raphson method
- (b) Eigen values and eigen vectors of a matrix
- (c) Difference between algebraic and Transcendental equations
- (d) Rolle's theorem and Taylors theorem.

ET-302(A)