B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering)

Term-End Examination

December, 2012

ET-302(A) : COMPUTER PROGRAMMING AND NUMERICAL ANALYSIS

Time : $\mathbf{3}$ hours
Maximum Marks : 70
Note : Attempt any five questions. All questions carry equal marks. Use of calculator is permitted.

1. (a) Write a flow chart and a program to read $7+7$ 10 numbers and find out largest and smallest numbers.
(b) Write a program to read two matrices A and B, check whether multiplication is possible or not? If possible out put of the multiplication is to be printed.
2. (a) Explain the difference between: 7+7
(i) constant and variable
(ii) function and subroutine
(iii) 'If then' statement and 'If then else' statement
(b) Write a program to calculate the number of combinations of n objects taken i at a time. This number is obtained from the relation $n!/ i!(n-i)$! where $n!=1.2 .3 . . n$
3. (a) Write format command for :
(i) Integer data
(ii) Real numerical data
(iii) Literal data
(iv) Double precision data
(b) Define Round off error and truncation error. Calculate a bound for the truncation error in approximating $\mathrm{e}^{x^{2}}$ by

$$
\left.1+x^{2}+\frac{x^{4}}{2!}+\frac{x^{6}}{3!}+\frac{x^{8}}{4!} \text { for } x \in\right]-1,1[\text {. }
$$

4. (a) Find a real root of $x^{3}-x=1$ between 1 and $7+7$ 2 by Bisection method. Compute five iterations.
(b) Find a positive value of $(17)^{1 / 3}$ correct to four decimal places by Newton-Raphson method.
5. (a) Assuming that the following values of $y \quad 7+7$ belong to a polynomial of degree 4 , compute the next three values :

$x:$	0	1	2	3	4	5	6	7
$y:$	1	-1	1	-1	1	-	-	-

(b) Prove that:

$$
\Delta+\nabla=\frac{\Delta}{\nabla}-\frac{\nabla}{\Delta}
$$

6. (a) Obtain the LV decomposition of the matrix $7+7$
$\left[\begin{array}{ccc}2 & -6 & 10 \\ 1 & 5 & 1 \\ -1 & 15 & -5\end{array}\right]$
(b) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=0.1$ from the table:

$$
\begin{array}{ccccc}
x: & 0.1 & 0.2 & 0.3 & 0.4 \\
y: & 0.9975 & 0.9900 & 0.9776 & 0.9604
\end{array}
$$

7. (a) Find from the following table, the area $7+7$ bounded by the curve and the x-axis from $x=7.47$ to $x=7.52$
$\begin{array}{lllllll}x ; & 7.47 & 7.48 & 7.49 & 7.50 & 7.51 & 7.52\end{array}$
$y: \begin{array}{lllllll} & 1.93 & 1.95 & 1.98 & 2.01 & 2.03 & 2.06\end{array}$
(b) Use the Runge Kutta method of fourth order to approximate y when $x=0.1$ given that $y=1$ at $x=0$
and $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x+y^{2}$
8. Explain the following :
(a) Convergence of Newton Raphson method
(b) Eigen values and eigen vectors of a matrix
(c) Difference between algebraic and Transcendental equations
(d) Rolle's theorem and Taylors theorem.
