B. TECH. CIVIL ENGINEERING (BTCLEVI)
 Term-End Examination
 December, 2012

BICE-011: STRUCTURAL ANALYSIS - II
Time : 3 hours
Maximum Marks : 70

Note: Answer any seven Questions. All question carry equal marks. Assume missing data if any. Use of calculator is permitted.

1. A mild steel bar 100 mm diameter is bent as shown in Figure-1. It is fixed horizontally at ' A ' and load of 500 N hangs at ' D^{\prime}. Find the vertical deflection at ' D^{\prime}. Take $\mathrm{E}=2 * 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$

(Figure - 1)
2. Find the vertical and horizontal deflections of the joint ' C ' of the loaded truss shown in Figure-2. The cross sectional area of CD and DE are each $2500 \mathrm{~mm}^{2}$ and those of other member are each $1250 \mathrm{~mm}^{2}$. Take $\mathrm{E}=2 * 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$

3. Four wheel loads of $6,4,8$ and 5 kN cross a girder of 20 m span, from left to right, followed by U.D.L. of $4 \mathrm{kN} / \mathrm{m}$ and 4 m long with the 6 KN load loading. The spacing between the loads in the same order are $3 \mathrm{~m}, 2 \mathrm{~m}$ and 2 m . The head of the U.D.L. is at 2 m from the last 5 kN load. Using influence lines, calculate the S.F. and B.M. at a section 8 m from the left support when the 4 kN load is at centre of the span.
4. A three-hinged circular arch of span 40 m and rise 8 m carries a concentrated load of 120 kN at a horizontal distance of 10 m from the left end. Find the reactions at the supports and the maximum positive and negative bending moment.
5. A two-hinged parabolic arch of span ' 1 ' and rize ' h ' carries a concentrated load ' W ' at the crown.

Show that horizontal thrust equals $\frac{25 \mathrm{Wl}}{128 \mathrm{~h}}$, at each support.
6. Find the fixed end moments for the beam carrying10 uniformly varying load shown in Figure-3.

7. Analyse the continuous beam loaded as shown in Figure- 4 by slope deflection method. Draw SFD and BMD. EI is constant

8. Analyse the continuous beam shown in Figure-5 by moment distribution method. Draw SFD and BMD. EI is constant.

(Figure-5)
9. Analyse the portal frame shown in Figure-6 by $\mathbf{1 0}$ moment distribution method and draw the bending moment diagram.

Figure - 6
10. Write short notes on any two of the following :
(a) Force method of analysis $2 \times 5=10$
(b) Influence line diagram
(c) Strain Energy

