B.Tech. COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination
 December, 2012

 BICS-014 : DESIGN AND ANALYSIS OF

 BICS-014 : DESIGN AND ANALYSIS OF ALGORITHM

 ALGORITHM}

Time : 3 Hours

Maximum Marks : 70
Note: Seven questions are required to be answered.

1. (a) Describe two methods to solve recurrence relations.
(b) What is potential method of amortized analysis ? Explain with suitable example.
2. (a) Describe an algorithm to check whether an array $\mathrm{A}[0 . \ldots . \mathrm{n}-1]$ is a min - heap or not. What is time complexity of this algorithm?
(b) Write merge sort algorithm to sort an array in ascending order.
$5+5=10$
3. Explain dynamic programming solution for $\mathbf{1 0}$ Matrix Chain Multiplication.
4. (a) Solve the following 0/1 Knapsack problem using dynamic programming $\quad \mathbf{5 + 5 = 1 0}$

$$
\begin{array}{r}
\mathrm{m}=6, \mathrm{n}=3, \\
\left(\omega_{1}, \omega_{2}, \omega_{3}\right)=(2,3,3) \\
\left(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}\right)=(1,2,4)
\end{array}
$$

(b) Differentiate between dynamic Knapsack and Branch-and-Bound Knapsack algorithms.
5. (a) Explain the classes of P, NP, and NP complete.
$5+5=10$
(b) Describe structure and algorithm for generating optimal binary search tree.
6. (a) Describe Miller - Rabin test for primality testing.
$5+5=10$
(b) Find the minimum number of operations required for the following chain Matrix Multiplication using dynamic programming $\mathrm{A}(30 \times 40) \times \mathrm{B}(40 \times 5) \times \mathrm{C}(5 \times 15) \times \mathrm{D}(15 \times 6)$
7. (a) What is Cook's theorem ? Explain NP - completeness reduction for subset sum problem.
(b) What is Universal Hashing ? $7+3=10$
8. Write Prim's algorithm for minimum Spanning 10 Tree. Apply Prim's algorithm to find MST of the following graph. Source Vertex is ' a '.

9. (a) Define eight queen problem. Discuss ranmdomized solution for eight - queen problem.
(b) What is Pollard's rho heuristic. $7+3=10$
10. Write short notes on any two
(a) LOS - Vegas Algorithm.
(b) ND - Hard
(c) CYK algorithm

