	B.Tech. IN COMPUTER SCIENCE AND
-2	ENGINEERING (BTCSVI)
∞	Term-End Examination
0	December, 2012
BICS-010 : FORMAL LANGUAGES AND	
AUTOMATA	

Time : 3 hours
Maximum Marks : 70
Note : Attempt any seven questions.

1. (a) Find a DFA machine that accepts the 5 language which has a substring 0101 input alphabet $\Sigma=\{0,1\}$.
(b) Explain with examples the algebric laws for 5 regular expressions.
2. Show that $L=\left\{a^{n} b^{n} c^{n} \mid n \geqslant 1\right\}$ is not context free $\mathbf{1 0}$
but context sensitive.
3. Define a Turing machine. Design a Turing 10 machine that accepts the language
$L=\left\{a^{n} b^{n+1} \mid n>0\right\}$.
4. State and prove that post correspondence problem $\mathbf{1 0}$ (PCP) is decidable.
5. Construct a grammar for the language 10 $L=\left\{a^{n^{2}} \mid n>1\right\}$. Identify the type of the grammar obtain.
6. (a) Differentiate between the Mealy Machine 5 and Moore Machine with example.
(b) Prove that if L is the regular language over 5 alphabet S, then $\bar{L}=S^{*}-L$ is also a regular language.
7. (a) State Myhill-Nerode Theorem. 5
(b) Convert the given grammar in Chomsky 5 Normal Form (CNF)
$S \rightarrow \mathrm{ABa}$
$\mathrm{A} \rightarrow \mathrm{a} a b$
$B \rightarrow A C$
8. Give the production rule for Type 0, Type 1, 10 Type 2 and Type 3 grammars of Chomsky hierarchy.
9. (a) What is ambiguous grammar ? Explain 5 with example.
(b) Construct finite automata equivalent to 5 following regular expression

$$
10+(0+11) 0^{*} 1
$$

10. Write short notes on any two : 10
(a) Universal Turing Machine
(b) The set P, NP and NP complete
(c) Undecidability
