BICS-009

B.TECH. IN COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination

December, 2012

BICS-009 : LOGIC DESIGN

Time : 3 hours

Maximum Marks : 70

- **Note :** Attempt **any seven** questions. All questions carry **equal** marks. All questions are in English. Answers should be in English.
- Implement the following boolean function 5 1. (a) using NOR gates only : $\mathbf{F} = \left(\mathbf{A}\ \overline{\mathbf{B}} + \overline{\mathbf{A}}\ \mathbf{B}\right)\ \left(\mathbf{C} + \overline{\mathbf{D}}\right)$ 5 "Static - O Hazard" - Explain this in brief. (b) Simplify the boolean function using Quine 6 2. (a) MC Clusky method : $f(x_1, x_2, x_3, x_4) = \Sigma m(0, 5, 7, 8, 9, 10, 11, 14, 15)$ Show how using a 3 - to - 8 decoder and 4 (b) multi input OR gates following Boolean realized expressions be can simultaneously : F_1 (A, B, C) = Σm (0, 4, 6) $F_2(A, B, C) = \Sigma m (0, 5)$ F_3 (A, B, C) = Σm (1, 2, 3, 7)

3.	(a)	Using 4 I/P multiplexer implement the following function : F (A, B, C) = $\Sigma m(0, 2, 3, 5, 7)$ Use B, C as select inputs.	5
	(b)	Design a octal to binary encoder.	5
4.	(a)	Add $+39$ and -22 in 2's complement method.	4
	(b)	Design a 4 bit binary adder subtractor combinational circuit.	6
5.	(a)	Explain a schmitt trigger transfer characteristic.	5
	(b)	Show how a D flip-flop can be converted to SR flip-flop ?	5
6.	(a)	Explain the operation of JK master slave flip-flop.	6
	(b)	Explain switched tail counter operation in brief.	4
7.	(a)	Design a MOD–6 synchronous counter using JK-flip-flop.	6
	(b)	Explain 3 bit binary ripple counter.	4
8.	(a)	Explain Mealy and Moore models of synchronous sequential circuit.	5

BICS-009

2

(b) An a synchronous sequential circuit is described by excitation function :

> $Y = x_1 \overline{x_2} + x_1 y$ and O/P function $Z = x_1 x_2 y$

- (i) Draw the logic diagram of a circuit
- (ii) Derive the transition table and O/P map.

9. Write short notes on *any two* :

- (a) **Binary ladders**
- (b) Continuous A/D conversion
- Successive approximation A DC (c)

10. Write short notes on any two :

- (a) Open collector TTL NAND gate
- (b) 74 COO CMOS NOR gate
- (c) Noise Immunity

BICS-009

10

10

5