B.TECH. IN COMPUTER SCIENCE AND ENGINEERING (BTCSVI)

Term-End Examination
December, 2012
BICS-009 : LOGIC DESIGN
Time: $\mathbf{3}$ hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks. All questions are in English. Answers should be in English.

1. (a) Implement the following boolean function 5 using NOR gates only :

$$
\mathrm{F}=(\mathrm{A} \overline{\mathrm{~B}}+\overline{\mathrm{A}} \mathrm{~B})(\mathrm{C}+\overline{\mathrm{D}})
$$

(b) "Static - O Hazard" - Explain this in brief.
2. (a) Simplify the boolean function using Quine 6 MC Clusky method :
$f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\operatorname{Lm}(0,5,7,8,9,10,11,14,15)$
(b) Show how using a 3 - to -8 decoder and 4 multi input OR gates following Boolean expressions can be realized simultaneously:
$\mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(0,4,6)$
$F_{2}(A, B, C)=\Sigma m(0,5)$
$F_{3}(A, B, C)=\Sigma m(1,2,3,7)$
3. (a) Using 4 I/P multiplexer implement the following function:
$F(A, B, C)=\Sigma m(0,2,3,5,7)$ Use B, C as select inputs.
(b) Design a octal to binary encoder.

4. (a) Add +39 and -22 in 2 's complement
4
method.
(b) Design a 4 bit binary adder subtractor 6
combinational circuit.
5. (a) Explain a schmitt trigger transfer 5 characteristic.
(b) Show how a D flip-flop can be converted to
5 SR flip-flop?
6. (a) Explain the operation of JK master slave
flip-flop.
(b) Explain switched tail counter operation in 4
brief.
$\begin{array}{lll}\text { 7. (a) Design a MOD }-6 \text { synchronous counter } & 6 \\ \text { using JK-flip-flop. }\end{array}$
(b) Explain 3 bit binary ripple counter. 4
7. (a) Explain Mealy and Moore models of 5 synchronous sequential circuit.
(b) An a synchronous sequential circuit is described by excitation function :
$Y=x_{1} \bar{x}_{2}+x_{1} y$ and O / P function $\mathrm{Z}=x_{1} x_{2} y$
(i) Draw the logic diagram of a circuit
(ii) Derive the transition table and O / P map.
8. Write short notes on any two :
(a) Binary ladders
(b) Continuous A/D conversion
(c) Successive approximation A DC
9. Write short notes on any two :
(a) Open collector TTL NAND gate
(b) 74 COO CMOS NOR gate
(c) Noise Immunity
