00883

B.Tech. (AEROSPACE)

Term-End Examination

December, 2012

BASE-005 : INSTRUCTION TO COMPUTER PLAY DEVICE

Time : 3 hours Note : Attempt any seven quest permitted.		ours Maximum Marks	Maximum Marks : 70 y seven questions. Use of calculator is	
		ttempt any seven questions. Use of calculate ermitted .		
1.	Deri (a)	ive the differential equation for : Un steady 1-D heat conduction. Also define	6	
	(b)	the accurate solution and precise solution. Discuss in brief the Lax Wendroff method and give it's stability criteria.	4	
2.	(a)	Derive the energy equation for a viscous flow with heat transfer in non conservation form	5	
	(b)	Justify CFD as a Research tool. Write and explain the steps involved in CFD Process.	5	
3.	(a)	How the boundary conditions and initial conditions are applied to the Nozzle flow ?	7	
	(b)	Why the governing equations are to be transformed into non dimensional form ?	3	

- (a) Describe Mac Cormark multi step method.
 - (b) Consider the viscous flow of air over a flat plate variation in velocity with respect to y

4

6

is given as : $U = 1582 (1 - \frac{-y}{L})$. where L = 1 unit and $\mu = 3.37 \times 10^{-7} \text{ slug/(ft.s)}$. y is from 0 to 0.3 in the step's of 0.1. Find the percentage error in shear stress, involved in first order and second order difference compared to exact solution.

- Draw and explain the Subsonic Supersonic flow 10 through the C-D nozzle and also show the variation in properties along the length of nozzle.
- 6. (a) Distinguish between the basic discretisation 5 techniques. Derive the expression for 1st order forward, 1st order rearward and 2nd order central difference equation with respect to *x*.
 - (b) Explain the domain and boundaries for the solution of Parabolic equation in 2D. Also explain the steady boundary layer flow's over a body.
- What is the difference between the Euler's model 10 and Navier Stokes model of equations ? Write the generic form of Navier Stokes model.

BASE-005

4.

- Consider the irrotational, 2D, inviscid, steady flow 10 of a compressible gas. The flow field is slightly perturbed from free seam like flow over a thin profile. Find the root's of equations involved in such kind of flow problem using Cramer's rule and Eigen Method.
- Differentiate between explicit approach and 10 implicit approach for the solution of difference equations. Formulate the explicit form for 1-D heat conduction equation. With an example explain the concept of compressed grid.