B.TECH. (AEROSPACE ENGINEERING) (BTAE)

Term-End Examination
December, 2012

BAS-015 : AERODYNAMICS - II

Note: (1) Question No. 1 is compulsory.
(2) Attempt any 6 from question No. 2-9.

1. Attempt any five of the following : $5 \times 2=10$
(a) Explain the formation of wing-tip vortices.
(b) What is a detached shock wave? When is it formed?
(c) How laminar flow airfoil geometry is different from a conventional airfoil ?
(d) An 'airplane' is flying at 3.0 Mach at an altitude where the pressure and temperature are respectively 0.5 atm and $-20^{\circ} \mathrm{C}$. Calculate the pressure and temperature at the leading edge of the wing.
(e) Sketch the variation of Pressure ratio $\mathrm{P} / \mathrm{P}_{\mathrm{o}^{\prime}}$ with important values, along a De-laval nozzle for supersonic isentropic flow.
(f) Bring out any two important differences between shock waves and expansion waves in a supersonic flow.
2. (a) Derive a relationship for speed of sound in 5 air.
(b) Air flows isentropically through a convergent passage of inlet area $10 \mathrm{~cm}^{2}$. If inlet conditions are $\mathrm{M}_{1}=0.2, \mathrm{P}_{1}=1 \mathrm{~atm}$, $\mathrm{T}_{1}=27^{\circ} \mathrm{C}$, and exit Mach No. $\mathrm{M}_{2}=0.8$. Compute.
(i) the mass flow rate,
(ii) exit pressure and
(iii) exit area.
3. (a) A thin plate of length 2 m and width 1 m is moving in air along its length at a speed of $10 \mathrm{~m} / \mathrm{s}$. Calculate the total skin friction drag on the plate assuming sea level conditions.
(b) Write short note on Boundary Layer 3
Separation.
4. (a) What is Helmholtz's theorem ?

2
(b) Derive the fundamental equation of the 4
prandtl's lifting line theory.
(c) Show that for an elliptical lift distribution

4 the downwash is constant over the span of the wing.
5. (a) Plot a relation connecting flow turning 7 angle (θ), shock angle (β) and free stream Mach number (M) for oblique shock waves. Explain the key features of this plot.
(b) Write a short note on Expansion 3 Hodograph.
6. (a) Draw a Mollier diagram for flow through a

4 rough constant area duet.
(b) Air enters a rough constant area duct of 6 length 30 m and Diameter 0.15 m at $\mathrm{M}_{1}=0.3, \mathrm{P}_{1}=1$ atm and $\mathrm{T}_{1}=273 \mathrm{~K}$ assuming friction constant $f=0.005$, calculate the flow properties $\mathrm{M}_{2}, \mathrm{P}_{2}, \mathrm{~T}_{2}, \mathrm{P}_{\mathrm{O} 2^{\prime}}$ $\mathrm{T}_{\mathrm{O} 2}$ and P_{2} at exit.
7. (a) Sketch the flow pattern past spherical at different Reynold nos. with respect to sequence of events like vortex shedding, Laminar Separation and Turbulent Separation.
(b) Why a golf ball is dimpled ?
8. Consider a double wedge airfoil having chord $\mathrm{C}=2 \mathrm{~m}$ and half angle 10° kept at an angle of attack of 5° in supersonic stream of Mach number 2.5. Evaluate Lift and Drag of this airfoil considering sea level conditions.

9. (a) Explain briefly the procedure to be followed for analysis of a supersonic nozzle using method of characteristics.
(b) Write notes on optimum, under-expanded

