No. of Printed Pages : 3

B.TECH. (AEROSPACE ENGINEERING) (BTAE)

Term-End Examination

December, 2012

BAS-015 : AERODYNAMICS - II

Time : 3 Hours

Maximum Marks : 70

Note :	(1)	Question No. 1 is compulsory.
	(2)	Attempt any 6 from question No. 2 - 9.

- 1. Attempt *any five* of the following : $5x^{2x}$
 - (a) Explain the formation of wing-tip vortices.
 - (b) What is a detached shock wave ? When is it formed ?
 - (c) How laminar flow airfoil geometry is . different from a conventional airfoil ?
 - (d) An 'airplane' is flying at 3.0 Mach at an altitude where the pressure and temperature are respectively 0.5 atm and -20° C. Calculate the pressure and temperature at the leading edge of the wing.
 - (e) Sketch the variation of Pressure ratio P/P_o, with important values, along a De-laval nozzle for supersonic isentropic flow.
 - (f) Bring out any two important differences between shock waves and expansion waves in a supersonic flow.
- 2. (a) Derive a relationship for speed of sound in 5 air.

01503

BAS-015

5x2=10

- (b) Air flows isentropically through a convergent passage of inlet area 10 cm². If inlet conditions are $M_1 = 0.2$, $P_1 = 1$ atm, $T_1 = 27^{\circ}$ C, and exit Mach No. $M_2 = 0.8$. Compute. 1+2+2
 - (i) the mass flow rate,
 - (ii) exit pressure and
 - (iii) exit area.
- (a) A thin plate of length 2 m and width 1 m is 7 moving in air along its length at a speed of 10 m/s. Calculate the total skin friction drag on the plate assuming sea level conditions.
 - (b) Write short note on Boundary Layer 3 Separation.
- **4.** (a) What is Helmholtz's theorem ?
 - (b) Derive the fundamental equation of the 4 prandtl's lifting line theory.

2

- (c) Show that for an elliptical lift distribution 4 the downwash is constant over the span of the wing.
- 5. (a) Plot a relation connecting flow turning 7 angle (θ), shock angle (β) and free stream Mach number (M) for oblique shock waves. Explain the key features of this plot.
 - (b) Write a short note on Expansion **3** Hodograph.

BAS-015

- 6. (a) Draw a Mollier diagram for flow through a 4 rough constant area duet.
 - (b) Air enters a rough constant area duct of length 30 m and Diameter 0.15 m at $M_1 = 0.3$, $P_1 = 1$ atm and $T_1 = 273$ K assuming friction constant f = 0.005, calculate the flow properties M_2 , P_2 , T_2 , P_{O2} , T_{O2} and P_2 at exit.
- 7. (a) Sketch the flow pattern past spherical at 8 different Reynold nos. with respect to sequence of events like vortex shedding, Laminar Separation and Turbulent Separation.

2

- (b) Why a golf ball is dimpled ?
- 8. Consider a double wedge airfoil having chord 10 C=2 m and half angle 10° kept at an angle of attack of 5° in supersonic stream of Mach number 2.5. Evaluate Lift and Drag of this airfoil considering sea level conditions.

- 9. (a) Explain briefly the procedure to be followed 7 for analysis of a supersonic nozzle using method of characteristics.
 - (b) Write notes on optimum, under-expanded **3** and over-expanded C-D nozzles.

BAS-015