No. of Printed Pages : 3

BAS-013

B.TECH. (AEROSPACE ENGINEERING) BTAE

Term-End Examination December, 2012

BAS-013 : PROPULSION - I

Time : 3 hours

00593

Maximum Marks : 70

Note	:	Question 9 questic	1 is compulsory. In addition, answer an ms. Use of calculator is permitted .	y other
1.	(a)	Fill ir	n the blank.	1x3=3
		(i)	For a given compression ratio, efficiency of diesel engine is than that of otto cycle.	
		(ii)	Wavelength of thermal radiation is than X and gamma rays.	
·		(iii)	In an IC engine, at one stage both inlet and outlet valves are open for as much as degrees.	
	(b)	Answ	ver True or False.	1x4=4
		(i)	Reciprocating engines are ideal for cruise speeds upto 600 kmph.	
		(ii)	Very rich air fuel ratios lead to excessive carbon deposits in exhaust.	•
		(iii)	Super-charged engines are also known as naturally - aspirated engines.	
		(iv)	Turbocharger is a centrifugal compressor driven by exhaust gases.	

BAS-013

1

- **2**. (a) Draw a diesel Cycle on p-v and T- ϕ diagram
 - (b) With a sketch/graph, compare efficiency of diesel cycle with otto cycle for a range of compression ratios

4

3

- 3. Air enters an engine working on otto cycle at 100 KPa and 27°C. The engine compression ratio is 8 and heat added per cycle is 1500 KJ/kg. Calculate thermal efficiency of the engine (take r = 1.4, Cv = 0.72 KJ/kg-K) by calculating work done.
- 4. (a) Describe Stefan-Boltzman's law for radiation 3
 (b) Differentiate between black, opaque and 4
 - grey bodies
- 5. (a) State advantages of IC engines over external 3 combustion engines.
 - (b) Explain the working a four stroke SI engine 4
- 6. (a) Calculate Stoichiometric ratio of fuel 3 $C_{12} H_{24}$
 - (b) Define and explain pre-ignition and 4 knocking in SI engines.
- 7. (a) Describe various types of reciprocating 3 engines.
 - (b) With the help of a sketch explain variation 4 of specific fuel consumption with air fuel ratio.

8.	(a)	Write a short note on Rich air-fuel mixtures.	3		
	(b)	Sketch and explain 6 opposed cylinder engine indicating cylinder numbers.	4		
9.	(a)	Describe carburettor icing	3		
	(b)	Draw a line diagram of battery ignition system.	4		
10.	An engine produces 80 kW power at 80% mech. efficiency. BSFC of engine is 260gm/kW-hr. A design improvement through better lubrication,				

reduces engine friction by 4kW. Assuming thermal efficiency to remain constant, calculate savings in fuel per hour

- **11.** (a) Compare liquid cooling of engines vis-a-vis **3** air cooling
 - (b) What are the requirements of a good 4 lubrication system ?
- A four-stroke for cylinder engine develops 14.7 7
 kW when running at 1000 rpm. Mean effective pressure is 5.5 bar. Calculate diameter and stroke of piston when length of stroke is 1.5 times that of the diameter.

BAS-013

3