B. TECH (AEROSPACE ENGINEERING) (BTAE)

Term-End Examination
December, 2012

BAS-009 : INTRODUCTION TO AERONAUTICS

Time: $\mathbf{3}$ hours
Maximum Marks : 70
Note: Attempt any seven questions. All questions carry equal marks. Use of scientific calculator is permitted.

1. (a) Describe the air foil nomenclature $5+5$
(b) Define the following terms :
(i) Tapered wing.
(ii) Profile drag.
(iii) Thrust - specific fuel consumption.
(iv) Combat range.
(v) Cruise propeller.
2. (a) Explain in brief the trailing vortex system. $5+5$
(b) How does down wash influence on the tailplane?
3. (a) What do you mean by airleron reversal $5+5$ speed ?
(b) Discuss the effect on Aerodynamic characteristics of change in "Aspect Ratio".
4. (a) What are the two important maneuvering flights and their essential requirements ?
(b) Define the following:
(i) TAS
(ii) Aerodynamic centre
(iii) Continuity equation
(iv) Vortex
(v) Super critical airfoil.
5. A jet plane which weights 29.43 kN and having $\mathbf{1 0}$ a wing area of $20 \mathrm{~m}^{2}$ flies at a velocity of $950 \mathrm{~km} /$ hour, when the engine delivers 7357.5 kW power. 65% of the power is used to overcome the drag resistance of the wing. Calculate the Co - efficients of Lift and drag for the wing. The density of the atmospheric air is $1.21 \mathrm{~kg} / \mathrm{m}^{3}$.
6. At an airport in the tropics, the measured pressure and temperature on a particular day are 737 mm of mercury and $40^{\circ} \mathrm{C}$ respectively. Calculate the density ρ and the relative density σ of the air.
7. On a certain day the pressure at sea level is $101500 \mathrm{~N} / \mathrm{m}^{2}$ and the temperature is $25^{\circ} \mathrm{C}$. The temperature is found to fall linearly with height to $-55^{\circ} \mathrm{C}$ at 11300 m , above which altitude, the temperature is constant. Calculate the pressure, density, and absolute and Kinematic coefficients of viscosity at (a) 10000 m , and (b) 11300 m .
8. The aeroplane is flying at an altitude where the ambient pressure is $30000 \mathrm{Nm}^{-2}$ and the temperature is $-44.4^{\circ} \mathrm{C}$. Its true air speed is $270 \mathrm{~ms}^{-1}$. Calculate the indicated air speed and compare the result with that obtained by neglecting compressibility.
9. Find the Mach Number when an aeroplane is $\mathbf{1 0}$ flying at $1000 \mathrm{~km} / \mathrm{hr}$. through still air having pressure of $7 \mathrm{~N} / \mathrm{cm}^{2}$ and temperature of $-5^{\circ} \mathrm{C}$. Take $\mathrm{R}=287.14 \mathrm{~J} / \mathrm{kg} \mathrm{k}$.
Calculate the pressure and temperature of air at stagnation point. take $\gamma=1.4$
10. Write short notes on any two of the following:
(a) Brequet range and endurance equation $2 \times 5=10$
(b) Active and passive boundary layer control devices.
(c) Types of wing platforms
(d) Laminar and supercritical aerofoil.
