No. of Printed Pages : 2

Time : 2 hours

BNA-011

B.Sc. (NAUTICAL SCIENCE)

7 7	Term-End Examination					
001	December, 2012					
	BNA-011 : APPLIED MATHEMATICS					
Time	2 hours Maximum Marks : 70					

Note :	(i)	Attempt any five questions.					
	(ii)	Use of calculator is <i>permitted</i> .					

(a) Find λ that the two vectors 7 1. so $\hat{i} + (2\lambda - 1)\hat{j} + 3\hat{k}$ and $-3\hat{i} + 2\hat{j} - \lambda\hat{k}$ are perpendicular.

(b) Evaluate
$$\int_0^1 \frac{dx}{1+x^2}$$
 using Simpson's $\frac{1}{3}$ 7

rule taking $h = \frac{1}{4}$.

- From a pack of 52 cards, two are drawn one 7 2. (a) by one without replacement. Find the probability that both of them are kings.
 - Find the line of regression of y on x for the (b) 7 following data :

<i>x</i> :	10	9	8	7	6	4	3
y :	8	12	7	10	8	9	6

3. (a) If
$$y = \sqrt{\frac{1-x}{1+x}}$$
 prove that 7

$$\left(1-x^2\right)\frac{\mathrm{d}y}{\mathrm{d}x}+y=0$$

(b) If
$$y = (\tan^{-1}x)^2$$
 show that
 $(x^2+1)^2y_2 + 2x(x^2+1) y_1 = 2$

7

7

7

4. (a) Evaluate :
$$\int \frac{x}{\sqrt{x+2}} dx$$
 7

(b) Evaluate
$$\int \frac{\sin 4x}{\sin x} dx$$
 7

5. (a) In a spherical triangle ABC, angle 7

$$A = 124^{\circ}21'$$
, side AB = 41°30', and side
 $AC = 51^{\circ}30'$. Calculate side BC using
haversine formula.

- (b) In a spherical right angled triangle angle 7 B = 90°, angle A = 43°30' and side a = 41°45'. Calculate sides b and c.
- 6. (a) Find the equation of the circle concentric with the circle $x^2 + y^2 + 4x + 6y + 11 = 0$ and passing through the point (5, 4).
 - (b) Find the co-ordinates of the vertices, the foci, the eccentricity and the equation of directrices of the hyperbola $16y^2 - 4x^2 = 1$.

BNA-011