BACHELOR OF ARCHITECTURE (BARCH)

Term-End Examination
December, 2012

BAR-044 : THEORY OF STRUCTURES-V

Time : 3 hours
Maximum Marks : 70
Note: Attempt any four questions. All questions carry equal marks. Use of scientific calculator and IS 456 code is permitted.

1. Determine area of tensile reinforcement in a $R C$ $17^{1 / 2}$ beam of rectangular cross section of 300 mm width and 500 mm depth. The section is subjected to a bending moment of 150 kN m . Use Fe 250 grade steel and M 25 concrete in design. Nominal cover of 30 mm is provided in the section. Use 20 mm diameter bars and provide a neat sketch showing detailing of reinforcement, 8 mm diameter double legged shear reinforcement is provided in the beam.
2. Determine moment of resistance of a rectangular $171 / 2$ section of 350 mm width and 500 mm depth. It is provided with 4 bars, of 20 mm diameter, of Fe 415 grade steel. Use M 20 grade of concrete and a nominal cover of 20 mm for the reinforcement. Use limit state method.
3. Design a cantilever beam of a clear span $3 \mathrm{~m}, 171 / 2$ loaded with a informally distributed load of $28 \mathrm{kN} / \mathrm{m}$ over its full length. The UDL intensity includes the self weight of the beam. Cross sectional dimensions of the beam are 300 mm (width) $\times 500 \mathrm{~mm}$ (depth). Use M 25 grade concrete and Fe 415 grade steel.
4. Design a rectangular roof slab supported on all $17^{1 / 2}$ its four edges. The effective spans are $3 \mathrm{~m} \times 7 \mathrm{~m}$. The top of the slab is covered with 100 mm thick lime terracing. Take imposed load on the slab as $1.5 \mathrm{kN} / \mathrm{m}^{2}$. Use M20 concrete, Fe 415 grade steel and provide 20 mm nominal cover to reinforcement. Draw a neat sketch showing detailing of reinforcement in the slab. Take total depth of slab section as 190 mm .
5. Determine required thickness of an $R C 171 / 2$ rectangular footing slab for a super imposed load of 1000 kN . The size of column supported on the footing is $600 \times 400 \mathrm{~mm}$. The size of footing has been taken as $2.5 \mathrm{~m} \times 1.8 \mathrm{~m}$ with the safe bearing capacity of soil being as $250 \mathrm{kN} / \mathrm{m}^{2}$. Use M25 grade concrete and Fe 415 grade steel.
6. (a) What is a two way shear ? How would you $71 / 2$ check shear in such a case ?
(b) What is the difference between the terms, 10 'Earthquake proof structures' and 'Earthquake resistant structures' ?
7. Write short notes on any two of the following $171 / 2$ topics :
(a) Effects of diagonal tension
(b) Theory of composite sections
(c) Doubly reinforced sections.
