Entrance Test for

00472

Ph.D. (CIVIL, MECHANICAL, ELECTRICAL ENGINEERING) Programme - 2016

Time: 3 hours Maximum Marks: 100

Instructions:

Please read the following instructions carefully:

- 1. There are two parts of the paper; Part A and Part B. Each part has 50 multiple choice questions (MCQ). Total number of questions is 100.
- 2. **Part A** consists of questions on Research Methodology. The **Part A** is common to Civil, Mechanical and Electrical Engineering and is compulsory to all.
- 3. **Part B** has **three** sub-parts having 50 MCQs in each sub-part.
 - (i) Part B-I: Civil Engineering
 - (ii) Part B-II: Mechanical Engineering
 - (iii) Part B-III: Electrical Engineering

A candidate has to attempt questions from any one sub part related to his/her discipline.

4. There is no negative marking for wrong answer.

Part - A

(Compulsory and Common)

(Common To Civil, Mech, Electrical)

Mathematics, Statistics and Reasoning

1.	A single die is thrown twice.	What is the probability that the sum is neither 8 or 9?
----	-------------------------------	---

	1
(1)	0
(1)	9

(2)
$$\frac{5}{36}$$

(3)
$$\frac{1}{4}$$

(4)
$$\frac{3}{4}$$

2. Match the items in Column I and Column II.

Column I

Column II

P. Gauss-Seidel Method

(i) Interpolation

Q. Forward Newton-Gauss Method (ii)

Non-Linear differential equations

Runge-Kutta Method R..

(iii) Numerical integration

S. Trapezoidal Rule (iv) Linear algebraic equations

 $P \rightarrow (i), Q \rightarrow (iv), R \rightarrow (iii), S \rightarrow (ii)$ (1)

 $P \rightarrow (i), Q \rightarrow (iv), R \rightarrow (ii), S \rightarrow (iii)$ (2)

 $P \rightarrow (i), Q \rightarrow (iii), R \rightarrow (ii), S \rightarrow (iv)$

(4) $P \rightarrow (iv), Q \rightarrow (i), R \rightarrow (ii), S \rightarrow (iii)$

What is the value of a, if $B = \begin{pmatrix} 1 & 4 \\ 2 & a \end{pmatrix}$ is a singular matrix ? 3.

(1) 5

(2) 6

(4) 8

4. A box contains 20 defective items and 80 non-defective items. If two items are selected at random without replacement, what will be the probability that both items are defective?

(1) $\frac{1}{5}$ (2) $\frac{1}{25}$

(3) $\frac{20}{99}$

5. If $f(x) = \frac{2x^2 - 7x + 3}{5x^2 - 12x - 9}$, the $\lim_{x \to 3} f(x)$ will be:

(1) $-\frac{1}{3}$ (2) $\frac{5}{18}$

(3) 0

6. If $A = \begin{pmatrix} 5 & 3 & 2 \\ 0 & 4 & 1 \\ 0 & 0 & 3 \end{pmatrix}$ then |A| = ?

(1)

(2) 40 50

60

If two coins are tossed simultaneously, the probability of getting at least one head is: 7. $(2) \quad \frac{3}{\circ}$ The Blasius equation, $\frac{d^3 f}{dm^3} + \frac{f}{2} \frac{d^2 f}{dm^2} = 0$, is a: 8. Second order non-linear ordinary differential equation. (1)(2) Third order non-linear ordinary differential equation. Third order linear ordinary differential equation. (3)Mixed order non-linear ordinary differential equation. (4) The modulus of the complex number $\left\lceil \frac{3+4i}{1-2i} \right\rceil$ is: (2) $\sqrt{5}$ (1) $\lim_{\theta \to 0} \frac{\tan \theta}{\theta}$ is equal to: 10. (3)1 (1) (2) $\sin \theta$ (4)The area enclosed between the straight line y=x, and the parabola $y=x^2$ in the x-y plane is : (3) $\frac{1}{3}$ (4) $\frac{1}{2}$ (2)

12. In IGNOU, suppose there are 1000 study centres. Now, to start a new centre, it is required to determine how crowded the study centres are. It is to be done by random sampling of the data. For this following two methods may be applied.

Method A: Randomly visit 100 Study Centres and check each one, if it is crowded or not.

Method B: Call up 1000 randomly chosen IGNOU students and ask them if their study centre is crowded. (Assume that students give you authentic information.)

Which of the above method is correct?

- (1) Only Method A (2) Only Method B
- (3) None of the two are correct (4) Both Methods A and B

If the two random variables X and Y are negatively correlated (i.e. e<0). Then the scatter plot **13**. looks like:

For a particular project eight activities are to be carried out. Their relationships with other activities and expected durations are mentioned in the table below:

Activity	Predecessors	Duration (Days)
a	.	3
b	a	4
С	a	5
d	a	4
e	b	2
f	đ	9
g	c, e	6
h	f, g	2

The critical path for the project is:

- (1)
 - a b e g h (2) a c g h
- (3) a-d-f-h
- (4) a-b-c-f-h

- **15.** The matrix $A = \begin{pmatrix} 1 & 3 & 2 \\ 3 & 0 & 1 \\ 2 & 1 & 5 \end{pmatrix}$ is a :
 - (1) Symmetric

(2) Skew-symmetric

(3) hermitian

- (4) Skew-hermitian
- **16.** The cost function for a product in a firm is given by $5q^2$, where q is the amount of production. The firm can sell the product at a market price of $\stackrel{?}{\checkmark}$ 50 per unit. The number of units to be produced by the firm such that the profit is maximized is :
 - (1) 5
- (2) 10
- (3) 15
- (4) 25
- 17. A political party orders an arch for the entrance to the ground in which the annual convention is being held. The profile of the arch follows the equation: $y = 2x 0.1 x^2$.

Where y is the height of the arch in meters. The maximum possible height of the arch is:

- (1) 8 m
- (2) 10 m
- (3) 12 m
- (4) 14 m
- 18. If $\frac{\log x}{\log 5} = \frac{\log 36}{\log 6} = \frac{\log 64}{\log y}$, what are the values of x and y respectively?
 - (1) 8, 25
- (2) 25, 8
- (3) 8, 8
- (4) 25, 25

Directions for question numbers 19 and 20:

Vandana is organising a carrom game, consisting of four players, on Sunday night. She has seven players to choose from : family members Munni, Vani, and Honey and friends Amit, Binny, Chinky and Dicky.

There must be at least two family members in the game to teach her friends the rules and strategies for the game to go smoothly. Each player must be able to play with all the other players.

But there are some limitations:

- * Vani cannot play with Binny
- * Honey cannot play with Dicky
- * Dicky cannot play with Amit
- 19. If Dicky has the only carrom striker and must come, which of the other players must be invited?
 - (1) Munni, Binny and Chinky
- (2) Vani, Munni, and Chinky
- (3) Vani, Munni, and Amit
- (4) Vani, Munni, and Binny
- **20.** If Honey cannot make it on Saturday night and Amit is invited then, which other three must receive the invitation?
 - (1) Munni, Binny and Chinky
- (2) Munni, Vani and Binny
- (3) Munni, Vani and Chinky
- (4) Munni, Vani and Dicky

21.	Typ	e-I Error occu	rs if	•						
	(1)	the null hyp	othesis is	rejected e	even the	ugh i	t is true			
	(2)	the null hyp	othesis is	accepted	even th	ough	it is false			
	(3)	both the nul	l hypothe	esis as wel	ll as alte	ernativ	ve hypothes	is are rejec	rted	
	(4)	none of the	above							
22.		is a p	referred s	ampling r	method	for th	e populatio	n with fin	ite size.	
	(1)	Area sampli	ng		(2)	Clus	ster samplin	g		
	(3)	Purposive sa	ampling		(4)	Syst	ematic sam	pling		
23.	The	data of resea	rch is							
	(1)	Qualitative	only		(2)	Qua	ntitative on	ly		
	(3)	Both (1) and	1 (2)		(4)	Neit	ther (1) nor	(2)		
24.	Wha	at are the two	categorie	s of errors	used i	n Test	ing of Hypo	othesis ?		
	(1)	Type I and I	Гуре II er	rors	(2)	Тур	e 0 and Typ	e I errors		
	(3)	Type 0 and	Type II e	rrors	(4)	Тур	e A and Tyj	pe B errors	•	
25.	Ran	dom sampling	g is helpf	ul as it is		<u></u> .				
	(1)	an economic	cal metho	od of data	collecti	on				
	(2)	free from pe	rsonal bi	ases			•			
	(3)	reasonably	accurate							
	(4)	all the above	e							
26.	If th	e order of ma	trix A is 1	$n \times p$. An	d the o	rder o	of B is $p \times n$.	Then the	order of <i>AB</i>	is:
	(1)	$n \times p$	(2)	$m \times p$		(3)	$m \times n$	(4)	$n \times m$	
27.	In a	throw of dice	what is	the probal	oility of	gettir	ng number g	greater tha	n 5 ?	
	(1)	1/2	(2)	1/3		(3)	1/5	(4)	1/6	
28.	A si	mulation mod	lel uses tl	ne mathen	natical e	expres	sions and lo	ogical relat	ionships of	the
	(1)	real system			(2)	com	puter mode	el		
	(3)	performance	e measur	es	(4)	estir	nated infere	ences		
29.	Valu	es for the pro	babilistic	inputs to	a simul	lation	:			
	(1)	are selected	by the de	ecision ma	ker.					
	(2)	are controlle	-							•
,	(3)	are randoml						ι.		
	(4)	are calculate	ed by fixe	ed mathen	natical f	ormu	las.			

- **30.** A quantity that is difficult to measure with certainty is called a:
 - (1)risk analysis

- (2) project determinant
- probabilistic input (3)

- profit/loss process
- 31. The time variation of the position of a particle in rectilinear motion is given by, $x = 2t^3 + t^2 + 2t$. If v is the velocity and a the acceleration of the particle in consistant units, the motion started with:
 - v = 0, a = 0(1)
- (2) v = 0, a = 2 (3) v = 2, a = 0
- (4) v = 2, a = 2
- If point A is in equilibrium under the action of the applied forces the values of tension TAB and T_{AC} are respectively:

(1)520 N and 300 N (2)300 N and 520 N

(3)450 N and 150 N

- 150 N and 450 N (4)
- 33. Find the odd one in the following:
 - Watt-day
- Calorie (2)
- (3) Coulomb Farad (4)
- Electron volt
- 34. A man weighing 60 kg stands in an elevator. The force exerted by him on the floor of the elevator will be zero when:
 - (1)the elevator goes up at a uniform speed.
 - (2) it goes down at a uniform speed.
 - the cable of the elevator breaks and it falls freely. (3)
 - the elevator goes up at an acceleration of 9.8 m/ s^2 . (4)
- A particle moves towards east from a point A to a point B at the rate of 4 km/hr, and then 35. towards north from B to C at the rate of 5 km/hr. If AB = 12 km and BC = 5 km, then its average speed for its journey from A to C and resultant average velocity direct from A to C are respectively:
 - (1) $\frac{17}{9}$ km/hr and $\frac{13}{9}$ km/hr. (2) $\frac{13}{4}$ km/hr and $\frac{17}{4}$ km/hr.
 - (3) $\frac{17}{4}$ km/hr and $\frac{13}{4}$ km/hr. (4) $\frac{13}{9}$ km/hr and $\frac{17}{9}$ km/hr.

36.	A train of 150 m length is going toward speed of 5 ms ⁻¹ towards south direction parrot to cross the train is:				
	(1) 15 sec. (2) 12 sec.	(3)	10 sec.	(4) 8	sec.
37.	 (1) Consistency or stability (2) Appropriateness of interpretations (3) Ways in which people are the sam (4) A rank order of participants on so 	on the l	pasis of test sco	ores	
38.	 Analysis of covariance is: (1) A statistical technique that can be (2) A statistical technique that can be (3) A statistical technique that substituted (4) Adjusts scores on the independent 	used to utes for	control sequen random assign	cing effects. ment to grou	ps.
39.	 To determine whether noise affects the has one group solving mathematics promathematics problems in a noisy room completes 15 problems in one hour and the 22 problems in one hour. In the expedependent variable is (1) The number of problems solved, the (2) The number of problems solved, the (3) The noise level in the room; the number of problems; the number of problems solved. 	oblems in the group riment the difficular noise is umber of the control of the co	n a quiet room group solving p solving probler he independer alty of the prob level in the roo problems solv	and anothe problems in the quient variable is lems. m. ed.	r group solving the noisy room t room complete
40.	. Which of the following terms refers to a equate groups on a pretest or some other			t can be use	d to statistically
			c. fferential influe	ence	
	· · · •	• /	alysis of covar		
41.	(1) Experimental group	(2) Co	ent condition : ntrol group dependent grou		<u> </u>
42.	 Which of the following control technique and unknown variables? (1) Building the extraneous variable in (2) Matching (3) Random assignment (4) Analysis of covariance 			cher controls	for both known

4 3.		n experimental researd luced by the	ch study, th 	ie prii	mary	goal is to isolat	e and	identity the effe	:ct
	(1)	Dependent Variable		(2)	Extr	aneous Variable			
	(3)	Independent Variable		(4)	Con	founding Variab	le		
44.		type of design is one litions:	where all p	artici	pants	participate in al	l expe	rimental treatme	nt
	(1)	Factorial design		(2)	Rep	eated measures o	lesign		
	(3)	Replicated design	•	(4)	Pret	est - post - test co	ontrol -	group design	
4 5.	The	written and unwritte	en rules th	at spe	ecify	appropriate gro	oup be	ehavior are calle	ed
	(1)	Shared attitude (2)	Shared be	liefs	(3)	Shared values	(4)	Norms	
46.	Whi	ch of the following is a	characteris	tic of	quali	tative research?			
	(1)	Design flexibility		(2)	Indi	active analysis			
	(3)	Context sensitivity	•	(4)	All	of the above			
47 .	Whi	ch of the following invo	olves the st	ıdyinş	g of n	nultiple cases in (ne res	search study ?	
	(1)	Collective case study		(2)	Sing	gle case study			
	(3)	Instrumental case stu	dy	(4)	Intri	insic case study			
48.	Que	stionnaires can address	events wh	en its	chara	acteristics takes p	lace :		
	(1)	Combined footing							
	(2)	Strap footing							
	(3)	Cantilever footing							
	(4)	Mat footing							
49.	Whi	ch of these is not a met	hod of data	colle	ction	?			
	(1)	Questionnaires (2)	Interviews	5	(3)	Experiments	(4)	Observations	
50.	Seco	ondary/existing data ma	ay include v	which	of th	e following ?			
	(1)	Official documents		(2)	Pers	sonal documents		·	
	(3)	Archived research da	ta	(4)	All	of the above			

Part - B - I

FOR CIVIL ENGINEERING

- 51. Consider the following statements:
 - (i) In the work-breakdown structure, top-down approach is adopted.
 - (ii) Bar-chart depicts interdependencies of activities.
 - (iii) Controlling can be better achieved in a milestone chart.

Which of these statements are correct?

(1) (i) and (iii) only

(2) (i) and (ii) only

(3) (ii) and (iii) only

- (4) (i), (ii) and (iii)
- **52.** In PERT analysis, the time estimates of activities correspond to:
 - (1) Normal distribution
- (2) Poisson's distribution

(3) β -distribution

- (4) Binomial distribution
- 53. A machine costs ₹ 16,000. By constant rate of declining balance method of depreciation, its salvage value after an expected life of 3 years is ₹ 2,000. The rate of depreciation is :
 - (1) 0.25
- (2) 0.30
- (3) 0.40
- (4) 0.50
- 54. The activity duration (days) and resource requirements (units) are shown in the figure below:

What is the maximum resource required in a day?

- (1) 14 units
- (2) 11 units
- (3) 19 units
- (4) 18 units

55. The earliest date and the latest date of events 3 and 10 are given in the figure below. Activity E is connecting both the events and its duration is 10 weeks. The independent float of the activity is:

- (1) 5 weeks
- (2) 10 weeks
- (3) 15 weeks
- (4) 20 weeks

56. A simply supported beam is subjected to a couple somewhere in the span. Consider the following statements :

- (i) A rectangular shear force diagram would be produced for the beam.
- (ii) The bending moment diagram would be parabolic.
- (iii) Both + ve and ve bending moments which are maximum at the point of application of the couple would exist in the beam.

Which of these statements are correct?

- (1) (i) and (ii)
- (2) (i), (ii) and (iii)
- (3) (ii) and (iii)
- (4) (i) and (iii)

57. A loaded beam ABCD is shown in the figure below:

The magnitude of the reaction at C will be zero if the value of load W is :

- (1) 4 kN
- $(2) \quad 5 \text{ kN}$
- (3) 6 kN
- (4) 12 kN

58. Muller-Breslau principle is not applicable to get:

- (1) ILD for reaction at the ends of a simple beam
- (2) ILD for bending moment at a section
- (3) ILD for shear force at a section
- (4) Shear force and moment diagrams for the whole beam

59. The three hinged arch shown in the given figure will have value of H as:

- (1) 30 kN
- (2) 40 kN
- (3) 50 kN
- (4) 10 kN
- 60. The rigid portal frame shown in the given figure will not have any side sway if:

- (1) it is subjected to vertical loading only
- (2) $I_2 = 2I_1$
- (3) loaded in any manner
- (4) the loading is symmetrical about its centreline
- **61.** The force in the member BC is:

- $(1) \quad \frac{P}{2\sqrt{2}}$
- $(2) \qquad \frac{P\sqrt{3}}{2}$
- (3) $\frac{2F}{\sqrt{3}}$
- (4) Zero

62.		eel plate is 300 m en into it. What i						nal diar	meter of 16 mm is	
	(1)	2825 mm ²		2840 mm ²		(3)		(4)	3000 mm ²	
63.		compression me nost preferred sec		-			~	any c	ross-sectional axis,	
	(1)	a channel		a single an			_	(4)	a circular tube	
64.	If the	d:		n a beam is			•		s, then the beam is	
	(1) (3)	over reinforced l balanced beam	beam		(2) (4)		er reinforced bea beam	ım		
65.	A T-		s a r	ectangular	beam	of w	vidth equal to i	its flar	nge, if its neutral	
	(1) (2) (3) (4)	coincides with coincides with coincides within the flies in the web	entroi			orcem	ent			
66.	Bento (1)	onite is a materia limestone	l obta (2)				~	(4)	shales	
67.	The (1) (3)	correct increasing Silt, Sand, Collo Sand, Silt, Clay,	ids, C	lay	ace ar (2) (4)	· · · · · · · · · · · · · · · · · · ·				
68.		sistency as applied density	d to co	ohesion soil			sture content			
	(1) (3)	shear strength			(2) (4)	poro				
69.	Which of so		g met	hods is mos	st accı	ırate f	or the determina	ation of	f the water content	
	(1) (3)	Oven dry metho Calcium Carbide		hod	(2) (4)		l bath method nometer method			
70.	The (1)	unit of the coeffic cm ² /gm	ient o (2)	of consolidat cm²/sec			gm/cm ² /sec	(4)	gm-cm/sec	
71.	, ,	stance load due to	, ,	-				(~)	8	
71.	(1)	L	(2)		a circ	_	D ²	(4)	LD	
72.	In tri	i-axial compressio	n test	t, the deviat	or stre	ess is g	given by :			
	(1)	$\sigma_1 + \sigma_3$	(2)	$\sigma_1 - \sigma_3$		(3)	$\frac{1}{2}(\sigma_1+\sigma_3)$	(4)	$\frac{1}{2}(\sigma_1-\sigma_3)$	

73.	Coul (1) (3)	omb's theory of e the theory of pla empirical rules				the t	heory of elasti ge theory	city	·
74.	The (1)	earth pressure die Triangular		tion due to Rectangul				area is: (4)	Circular
75.	If tw (1) (3)	o footings are con Combined footing Cantilever footing	ng	ed by a bear	n it is (2) (4)	Strap	on as : of footing footing		
76.		road connecting a ering state is call National Highw Major District R	ed : vay	ct headquar	(2) (4)	State	etate to the dist Highway ressway	rict heado	quarters of another
77.	Widt (1)	th of a traffic lane 3.75 m	is: (2)	5.50 m		(3)	7.00 m	(4)	7.50 m
78.	The primary object of providing camber is: (1) easy drainage (2) improved appearance (3) easy separation of up and down traffic (4) easy overtaking facility								
79.	The (1) (2) (3) (4)	minimum super of 7% 10% not less than the not less than car	e grad	e of the roa	.d				
80.	In pl	ains, the minimu	m len	gth of trans	ition o	curve :	is:		
	(1)	$\frac{V^2}{R}$	(2)	$\frac{V^2}{1.5 R}$		(3)	$\frac{2.7 \mathrm{V}^2}{\mathrm{R}}$	(4)	$\frac{\mathrm{V}^2}{24\mathrm{R}}$
81.	A pa (1) (3)	vement is classifi Wearing course Sub - base	ed as	flexible pav	vemen (2) (4)	Base	gid pavement course grade	based on	its:
82.	PCU (1)	equivalent for a 1.00	bus m (2)	ay be taker 0.75	as:	(3)	2.25	(4)	16.00
83.	Thro	w of switch for a 89 mm	BG tr (2)	ack is : 91 mm		(3)	93 mm	(4)	95 mm
84.	The 1 (1)	maximum degree 10°	of cu (2)	rve on a BG 16°	track	is: (3)	20°	(4)	40°

03.	rne	meteorological con	iaino	n winch im	luenc	es uie	size and local	ion or a	n an port is.	
	(1)	atmospheric pres	sure		(2)	air d	lensity			
	(3)	wind direction			(4)		ne above			
	(0)	White direction			(-)	0.11	,			
~ ~	m 1									
86.		pidity is the ability	of wa	iter to:			-			
	(1)	scatter light								
	(2)	retain suspended	solid	s						
		retain colloidal so			on					
	(4)	detain dissolved s							•	
	(*)	detail dissolved s	SOMUS	*** ****						
a= .	rent			1 . 1 .		1 11		ď		
87.		content of total sol		_			-			
	(1)	50 mg/L	(2)	100 mg/L		(3)	500 mg/L	(4)	2000 mg/L	
88.	The	minimum amount	of D.	O. desirabl	e in a	ny wa	ater body is not	t less tha	an:	
	(1)			2 mg/L		-	•	(4)	5 mg/L	
	(1)	I mg/ L	(~)	2 III6/ D	•	(0)	U 1116/ L	(-)	0 22.8/ 22	
^^	DOT									
89.		equation is:				_				
	(1)	$x = L_i (1 - 10^{-kt})$ $K_T = K_{20} (1.047)^T$			(2)	x = I	$T (1-10^{-kt})$ $(1-10^{-kt})$			
	(3)	$K_T = K_{20} (1.047)^T$	- 20		(4)	x = 1	$(1-10^{-kt})$			
	` .	1 200								
90.	Out	of the following, a	wate	r borne dis	ease i	s:				
<i>,</i>		•	wate	i boilte dis			Gor			
	(1)	Malaria			(2)	Can				
	(3)	Dysentery			(4)	Ence	ephalitis			
91.	An a	average value of th	ie doi	nestic wate	er den	nand 1	for an Indian ci	ty is:		
	(1)	135 lpcd	(2)	27 lpcd		(3)	500 lpcd	(4)	750 lpcd	
	` ,	•	` '	•		` '		, ,	-	
92.	Ove	rflow rate of a sed	imen	ation tank	is ·					
/ •		mon face of a sea.		auon ana	15,					
	(1)	Q			(2)		Q			
	(1)	Plan area			(2)	Are	a of longitudina	al section	n	
		x 2001 000					Ü			
	(2)	Q			(4)		Q			
	(3)	Cross sectional a	rea		(4)	Pla	n area × Liquid	depth		
		CIOSS SCCIOILLI A	ucu		,		1			
	_									
93.	Sew	age is :		*						
	(1)	waste water from	n bat	hrooms						
	(2)	drainage from ro	oads							
	(3)	waste water from		hen						
	` '				nduct	rial a	ricin			
	(4)	any waste water	or ac	inesuc or i	nausi	riai O	rigin			
94.	A la	mphole is helpful i								
	(1)	illuminating sew	er lin	e	(2)	clea	ning sewer line	•		
	(3)	repairing			(4)	testi	ng sewers			
	• ,	. 0			` '					
	•									

- 95. Electrostatic Precipitator (ESP) removes :
 - (1) gas borne particulate matter in air
- (2) turbidity
- (3) dissolved solids particles in water
- (4) none of the above
- 96. Which one of the following statements is the most appropriate:
 - (1) The actual infiltration rate at any given time may be equal to infiltration capacity.
 - (2) The actual prevailing rate of infiltration of water in the soil at any given time, is known as the infiltration rate.
 - (3) When rainfall rate is less than the infiltration capacity, the infiltration rate is approximately equal to the rainfall rate.
 - (4) All of the above.
- 97. Absolute humidity in air:
 - (1) increases with increase of altitude.
 - (2) decreases with increase of altitude.
 - (3) initialy decreases with increase of altitude and thereafter it increases.
 - (4) initialy increases with increase of altitude and thereafter it decreases.
- 98. Which of the following statements is correct?
 - (1) Porosity of acquifer material is the sum of specific yield and specific retention provided all pores are interconnecting.
 - (2) Specific retention decreases with decrease in grain size of acquifer material.
 - (3) Specific yield is the ratio of the volume of water that drains from the saturated material due to the capillary force to the total volume of acquifer material.
 - (4) Specific retention is the ratio of volume of water that is retained by a saturated material when drained due to capillary force.
- 99. The is non-equillibrium equation $s(r, t) = \frac{Q}{4\pi T}$. W(u), may be valid for which of the following condition(s)?
 - (i) Wells in confined acquifer.
 - (ii) Steady state flow towards partially penetrating wells.
 - (iii) Unsteady state flow towards fully penetrating wells.
 - (iv) Steady state flow towards fully penetrating unconfined acquifers.

The correct answer is:

- (1) For conditions (ii) and (iii)
- (2) For conditions (i) and (iv)
- (3) For conditions (i) and (iii)
- (4) For condition (iv) only
- **100.** An error of 1% in measuring the head of water over the crest of a triangular notch, produces an error, in the discharge rate, which is equal to :
 - (1) 1%
- (2) 1.5%
- (3) 2.0%
- (4) 2.5%

Part - B - II FOR MECHANICAL ENGINEERING

51.	A C (1)	upola furnace cai 500°C	n proc (2)	iuce a maxii 1000°C	mum	(3)	erature or arous 1650°C	na : (4)	3250°C
	(1)	300 C	(2)	1000 C		(5)	1050 C	(*)	0200
52.	The	moisture content	in the	moulding	sand '	varies	between:		
	(1)	2 and 8%	(2)	5 and 10%	•	(3)	10 and 15%	(4)	15 and 20%
53.	Inve	stment casting is	usefu	l for :					
	(1)	Large size casti	ngs	•					
	(2)	Very large size	castin	gs					
	(3)	Small size casting	ngs						
	(4)	Small size casting	ngs ha	wing intrica	te de	tails			
54 .	Thir	aluminium shee	ts can	be welded	by:				
	(1)	MIG Welding			(2)	TIG	Welding		
	(3)	Resistance Weld	ding		(4)	Subi	merged arc We	lding	
55.	A to	ol signature cons	ists of	:					
	(1)	Five elements			(2)	Six e	elements		
	(3)	Seven elements			(4)	Eigh	nt elements		
56.	The	correct relations	hip be	etween shea	r ang	le, φ;	rake angle, α a	and chip	thickness ratio
	(1)	$\cot \phi = \frac{\gamma \sin}{1 - \gamma c}$	os a		(2)	tan	$\phi = \frac{\gamma \sin \alpha}{1 - \gamma \cos \alpha}$	ž	
	(3)	$\tan \phi = \frac{\gamma \cos}{1 - \gamma s}$	in α	÷.	(4)	tan	$\phi = \frac{\gamma \cos \alpha}{1 - \gamma \cos \alpha}$	ž	
57.	The	value of chip thi	ckness	ratio is :					
	(1)	Greater than 1			(2)	Grea	ater than 2		
	(3)	Less than 1			(4)		s than zero		
58.	Whi	ich of the followi	ng ope	erations is al	lso kr	own a	as internal turn	ing?	
	(1)	Milling	(2)	Tapping		(3)	Boring	(4)	Facing
59.	Whi	ich of the followin	ng is l	east hard?					
	(1)	Diamond	~		(2)	Cub	ic boron nitride	e	
	(3)	Aluminium oxi	de		(4)	Silic	on Carbide		

- 60. In EDM, better surface finish is obtained at:
 - (1)High frequency and low discharge current
 - (2)Low frequency and low discharge current
 - (3)Low frequency and high discharge current
 - (4) High frequency and high discharge current
- 61. For a Newtonian fluid:
 - (1)shear stress is proportional to shear strain
 - (2)rate of shear stress is proportional to shear strain
 - (3)shear stress is proportional to rate of shear strain
 - (4) rate of shear stress is proportional to rate of shear strain
- 62. In a two-dimensional velocity field with velocities u and v along the x and y directions respectively, the convective acceleration along the x-direction is given by :

$$(1) \quad u\frac{\partial u}{\partial x} + v\frac{\partial u}{\partial y}$$

(2)
$$u\frac{\partial u}{\partial x} + v\frac{\partial v}{\partial y}$$

(3)
$$u \frac{\partial v}{\partial x} + v \frac{\partial u}{\partial y}$$

$$(4) \quad v\frac{\partial u}{\partial x} + u\frac{\partial u}{\partial y}$$

- 63. A two-dimensional flow field has velocities along the x and y directions given by $u = x^2t$ and v = -2xyt respectively, where t is time. The equation of stream-line is :
 - (1) $x^2y = constant$

 $xy^2 = constant$

(3) xy = constant

- (4) not possible to determine
- 64. A streamline and an equipotential line in a flow field:
 - are parallel to each other (1)
- (2)are perpendicular to each other
- (3)intersect at an acute angle
- (4) are identical
- 65. Calculate the pressure due to a column of 0.3 m of water.

Take, density of water, $\rho_{\rm m} = 1000 \text{ kg/m}^3$.

- 2943 N/m^2 (1)
- (2) 2278 N/m^2
- (3) 3232 N/m^2 (4) 3947 N/m^2
- 66. The stream function for a two dimensional flow is given by, $\psi = 2xy$. Calculate the velocity at the point P(2, 3).
 - (1)7.21 units
- (2) 6.84 units
- 4.97 units (3)
- (4) 3.72 units

67.	The s	separation of bou	ndary	layer takes	s place	in ca	se of:		
	(1)	negative pressur	re gra	dient	(2)	posi	tive pressure g	radient	
	(3)	zero pressure gr	adien	t	(4)	none	e of the above		•
68.	Powe	er transmitted the	ough	pipes will	be ma	ximuı	m when :		
	(1)	head loss due to	fricti	on $=\frac{1}{2}\times[1]$	total h	e a d at	t the inlet of th	e pipe]	
	(2)	head loss due to	fricti	on $=\frac{1}{4}\times[1]$	total h	ead at	t the inlet of th	e pipe]	
	(3)	head loss due to	fricti	on = total	head a	at the	inlet of the pip	e	
	(4)	head loss due to	fricti	$on = \frac{1}{3} \times [6]$	total h	ead at	t the inlet of th	e pipe]	
69.	Frou	de's number is de	efined	as the ratio	o of:				
	(1)	inertia force to v	iscou	s force	(2)	iner	tia force to gra	vity forc	9
	(3)	inertia force to e	elastic	force	(4)	inert	tia force to pres	ssure for	ce
70.	For t	he Laminar Flow	throu	igh a circul	lar pip	e:			
	(1)	the maximum v	elocity	r = 1.5 tim	es the	avera	ige velocity		
	(2)	the maximum v	elocity	r = 2.0 tim	es the	avera	ige velocity		
	(3)	the maximum v	elocity	r = 2.5 tim	es the	avera	ige velocity		
	(4)	none of the above	ve						
71.	Whi	ch of the followin	g is go	enerally no	t a cor	ntinuc	ous path robot	?	
	(1)	Welating robots			(2)	Grin	oling robots		
	(3)	Grinoling painti	ng rol	oots	(4)	Pick	and Place rob	ots	· .
72.	Wha	t is the name of t	he inf	o sent from	robot	senso	or to robot con	troller ?	
•	(1)	Pressure	(2)	Signal		(3)	Feedback	(4)	Output
73.	Whic	ch one of the follo	owing	terms refer	rs to tl	ne up-	down motion	of a robo	ot arm?
	(1)	Yaw	(2)	Lateral		(3)	Pitch	(4)	Elevate
74 .	Wha	t is the name of t	he spa	ace inside v	which	a robo	ot-unit operate	s ?	
	(1)	environment			(2)	exclı	usion zone		
	(3)	exclusive zone			(4)	wor]	k envelope		

75.	The	number of movable joints in the b	ase, tł	ne arm and effector of the robot determine:								
	(1)	Degree of Freedom	(2)	Flexibility								
	(3)	Operational limits	(4)	Payload capacity								
76.	pass		n ang	int P (5, 10) is to be obtained about a line which le of 45° counter clockwise with the <i>x</i> -axis. The :								
	(1)	(7.5, 5) (2) (10, 5)		$(3) (7.5, -5) \qquad (4) (10, -5)$								
77.	NC Contouring is an example of :											
	(1)	Continuous path positioning	(2)	Point to point positioning								
	(3)	Absolute positioning	(4)	Incremental positioning								
78.	Foi	generating one patch we require :										
	(1)											
	(2)	A set of grid control										
	(3)	Four boundering curves defining	, surfa	ice								
	(4)	Two boundering curves and a se	t of gi	rid control points								
79.	Whi	ch type of projection does not hav	e the	projection rays parallel to each other?								
	(1)	axonometric projection	(2)	oblique projection								
	(3)	orthographic projection	(4)	perspective projection								
80.	Pixels can be arranged in irregular:											
	(1)	one dimensional grid	(2)	two dimensional grid								
	(3)	three dimensional grid	(4)	none of the above								
81.	Wor	k sampling is applied for :										
	(1)	Estimation of the percentage util	izatioı	n of machine tools.								
	(2)	Estimating the percentage of the	time o	consumed by various job acitivities.								
	(3)	Finding out time standards, speci by stop watch method is not pos		where job is not repetitive and where time study								
	(4)	All of the above										
82.	Basi	c tool in work study is:										
	(1)	Graph paper	(2)	Process chart								
	(3)	Planning chart	(4)	Stop watch								

20

PHDCE/PHDME/PHDEE

83.	The 1	unit cost in case of batch production	on is _	is as compared to jobbing production							
	(1)	Same	(2)	Low							
	(3)	High	(4)	Can not be compared							
84.	For a	a product layout the material hand	ling e	equipment must :							
	(1)	Have full flexibility									
	(2)	Employ conveyor belts, trucks, tr	actors	s etc.							
	(3)	Be a general purpose type									
	(4)	Be designed as special purpose for	or a p	articular application							
85. •	. • Which of the following layouts is suited for mass production ?										
	(1)	Process layout	(2)	Product layout							
	(3)	Fixed position layout	(4)	Plant layout							
86.	PER	T has following time estimate :									
	(1)	One time estimate	(2)	Two time estimates							
	(3)	Three time estimates	(4)	Four time estimates							
87.	At tl	ne break-even point :									
	(1)	Total cost is more than the sales i	even	ue							
	(2)	Total cost is less than the sales re-	venue	2							
	(3)	Total cost is equal to sales revenu	e								
	(4)	Fixed cost is equal to variable cos	t								
88.	The	simplex method is the basic metho	d for	:							
	(1)	Value analysis	(2)	Operations research							
	(3)	Linear programming	(4)	Model analysis							
89.	The	production cost per unit can be rec	duced	l by :							
	(1)	Producing more with increased i	nputs	,							
	(2)	Producing more with the same in	nputs								
	(3)	Eliminating idle time									
	(4)	Minimizing resource waste									

90. An event is indicated on the network by :												
	(1)	A straight line		•								
	(2)	A number enclosed in a circle or a square										
	(3)	A straight line with circles at the ends										
	(4)	A dotted line										
91.	Bod	Body A is kept in contact with body B. Heat will flow from A to B, if:										
(1) The heat content of A is greater than that of B.												
(2) The temperature of A is greater than that of B.												
	(3) The specific heat of A is greater than that of B.											
	(4)	The specific hea	at of A	A is lower th	han th	at of E	3.					
92.	Whi	ch one of the foll	owing	g will have	least v	alue c	of thermal condu	ıctivity	?			
	(1)	Copper	(2)	Silver		(3)	Glass	(4)	Air			
93.	Hea	t is transferred b	y con	duction, cor	vectio	n and	radiation in :					
	(1)	insulated pipes	carry	ing hot wa	ter							
	(2)	refrigerator free	ezer c	oils								
	(3)	melting of ice										
	(4)	boiler furnace										
	The	The temperature inside a furnace is measured by :										
	(1)	Mercury thermometer				(2) Alcohol thermometer						
	(3)	Gas thermomet	er		(4)	Opti	cal pyrometer					
	Pipe	s are insulated so	that	:								
	1)) They may not break under pressure.										

There is minimum corrosion.

They can with stand higher fluid pressure.

Heat loss from the surface is minimized.

?)

96.	Baffles are provided in heat exchangers to :									
	(1)	remove dirt	remove dirt							
	(2)	increase heat tra	nsfer	rate						
	(3)	provide better n	necha	nical strength						
	(4)	reduce heat trar	ısfer ı	ate						
97.	If the	e absorptivity plu	s refle	ectivity of a body	equal	s 1, then the body	y is kı	nown as :		
	(1)	black body	(2)	grey body	(3)	opaque body	(4)	white body		
98.	The	critical radius of i	nsula	tion for sphere is	equal	to:				
	(1)	$\frac{2k}{h}$	(2)	klı	(3)	\sqrt{kh}	(4)	$\frac{h}{k}$		
99.	Nusselt number is a function of :									
	(1)	Reynold's numb	er an	d dynamic viscos	ity					
	(2)	Dynamic viscos	ity an	d Prandtl numbe	r					
	(3)	Prandtl number	and 1	Reynold's numbe	r					

Reynold's number and thickness of boundary layer

- (1) The surfaces are further apart
- (2) The surfaces are closer
- (3) The surfaces are smaller and closer
- (4) The surfaces are larger and closer

(4)

Part - B - III FOR ELECTRICAL ENGINEERING

51.	1. If low voltage winding of a 400/230 V, I-phase, 50 Hz transformer is to be connected 25 Hz, the supply voltage should be :							onnected to a			
	(1)	230 V (2)	460 V		(3)	115 V		(4)	65 V		
52.	In a	DC transmission line	:								
	(1)	It is necessary for th	e sending en	nd and	recei	ving end to b	e operated	l in sy	nchronism.		
	(2)	The effect of inductive and capacitive reactances are greater than in an AC transmission line of the same rating.									
	(3)	There are no effects	due to indu	ctive a	and ca	pacitive reac	tances.				
(4) Power transfer capability is limited by stability considerations.											
53.	If th	ere are 'b' branches ar	nd 'n' nodes	in any	y elect	rical circuit,	the numbe	r of e	quations will		
	(1)	n-1 (2)	ь		(3)	b-n-1	(4)	b-r	1 +1		
54.		A low value of initial capacitance A high value of initial capacitance									
55.		many 200 W/ 220 V					ies would	consu	me the same		
	(1)	power as a single 10 Not possible (2)	4	ıncana	esceni (3)	3	(4)	2			
56. Match the items in List I with the items in List codes given below the lists: List I							the correct	answ	er using the		
		То		<i>(</i> 1)	Use						
	(a)	Improve power facto		(i)	Shur						
	(b)	Reduce the current i		(ii)	Shu						
	(c)	Increase the power f		(iii)	Series capacitor						
	(d) Code	Reduce the Ferranti	епесі	(iv)	Serie	es reactor					
			م) رائعها (ما)	. (:)							
	(1)	$(a) \rightarrow (ii), (b) \rightarrow (iii), (c) \rightarrow $, , , , , ,	` '							
	(2)	$(a) \rightarrow (ii), (b) \rightarrow (iv), (c) \rightarrow (iv), (c) \rightarrow (iv)$, , , , ,	• ,							
	(3)	$(a) \rightarrow (iv), (b) \rightarrow (iii), (a) \rightarrow (iv), (b) \rightarrow (iii), (c)$	• • • • • • • • • • • • • • • • • • • •	` '							
	(4)	$(a) \rightarrow (iv), (b) \rightarrow (i), (c)$	$(1) \rightarrow (111), (d)$	$\rightarrow (11)$							

57.	In cy	lindrical coordin	ates, e	equation 3	$\frac{\partial^2 \psi}{\partial \rho^2}$ +	$\frac{1}{\rho} \frac{\partial \psi}{\partial \rho}$	$+\frac{\partial^2\psi}{\partial Z^2}+10$	= 0 is cal	led :		
	(1)	Maxwell's equa	tion		(2)	Lap	lace's equation	n			
	(3)	Poisson's equati			(4)	-	entz's equation				
58.	lossy	What is the major factor for determining whether a medium is free space, lossless dielectric, lossy dielectric, or good conductor?									
	(1)	Attenuation con	nstant		(2)		stitutive para	•	, ε, μ)		
	(3)	Loss tangent			(4)	Ketl	ection coeffici	ent			
59.	If the	e height of transn	nissio	n tower is	increas	sed:					
	(1)	the line capacita						l remain	unchanged.	•	
		(2) the line capacitance and inductance will not change.									
	(3)	the line capacita									
	(4)	the line capacita	ince v	viii decrea	ise and	ime i	nuuctance wii	n increase	·•		
60.	iden	3-phase power tical readings, T	he pov	wer factor	of the	load v	was:			ers had	
	(1)	Unity	(2)	0.8 laggi	ing .	(3)	0.8 leading	(4)	zero		
61.	0.40,	t is the maximum if the consument and ?									
	(1)	52.08 kW	(2)	50.8 kW		(3)	4.5 kW	(4)	60 kW		
62.	If an	induction machi	ne is 1	run at abo	ve syn	chrone	ous speed, it a	icts as :			
	(1)	A synchronous			•		induction gen				
	(3)	An Induction m	otor		(4)	Non	e of the above	e			
63.	Pure inductive circuit takes power (reactive) from the ac line when: (1) both applied voltage and current rise										
	(2)										
•	(3)	applied voltage	decre	ases but c	urrent	increa	ses -				
	(4)	none of these								•	
64.	With	100% inductive	shunt	compensa	ation, t	he vol	tage profile is	flat for:			
	(1)	100% loading of	f line		(2)	50%	loading of lin	ne			
	(3)	zero loading of	line		(4)	non	e of the above	!			
65.		an existing ac trai ame set-up, the s					ciency is 80%,	if dc volt	age is supp	olied for	
	(1)	70%	(2)	80%		(3)	90%	(4)	100%		

66.		ch the items in List I we es given below the lists		ic items in	LIST	II and selec	it the correc	t answer using the		
		List I	List II							
	Тур	e of Transmission line		Type of l	Dista	nce Relay I	Preferred			
	(a)	Short line	(i)	Ohm rela	y					
	(b)	Medium line	(ii)	Reactance	rela	у				
	(c)	Long line	(iii)	Mho relay	7					
	Cod	les:								
	(1)	$(a) \rightarrow (ii), (b) \rightarrow (i), (c)$	→ (iii)							
	(2)	$(a) \rightarrow (iii), (b) \rightarrow (ii), (c)$) → (i)							
	(3)	$(a) \rightarrow (i), (b) \rightarrow (ii), (c)$	→ (iii)							
	(4)	(a) \rightarrow (i), (b) \rightarrow (iii), (c)	→ (ii)							
67.		a fixed value of complex he real power loss will b	-			smission lin	e having a s	ending end voltag		
	(1)	V (2)	V^2		(3)	$1/V^2$	(4)	1/V		
68.	Base load plants usually haveload factor.			cap	capital cost,			cost and		
	(1)	high, high, high		(2)	higl	h, low, high	ı			
	(3)	low, low, low		(4)	low	, high, low				
69.	Pow	er generation cost redu	ces as	; :						
	(1)	diversity factor increa	ses ar	nd load fact	or de	ecreases				
	(2)	(2) diversity factor decreases and load factor increases								
	(3)	both diversity factor a	s wel	l as load fa	ctor d	lecrease				
	(4)	both diversity factor a	s wel	l as load fa	ctor ii	ncrease				
70.		ngle phase load is supp to the source is $10 \angle -$		•		,				
	(1)	load absorbs real pow	er and	d delivers r	eactiv	e power.				
	(2)	load absorbs real pow	er a n e	d absorbs r	eactiv	e power.				
	(3)	load delivers real pow	er an	d delivers r	eactiv	ve power.				
	(4)	load delivers real pow	er an	d absorbs r	eactiv	e power.				
						-				

Match List-I (type of device) with List-II (characteristics/application) and select the correct answer using the code given below the lists:

List-I

List-II

- MOSFET (a)
- Turn off by negative gate pulse (i)

(b) **GTO**

Bi-directional switching (ii)

(c) UJT

- (iii) High speed switching
- **TRIAC** (d)
- (iv) Triggering circuit

Codes:

- (a) (b) (c) (d)
- (1) (iii) (i) (iv) (ii)
- (2) (iii) (i) (ii) (iv)
- (3) (i) (ii) (iii) (iv)
- (4) (i) (ii) (iv) (iii)
- In a three phase full wave ac to dc converter, the ratio of output ripple frequency to the supply voltage frequency is:
 - (1) 2
- (2) 3
- (3)
- **(4)** 12

- 73. A triac is equivalent to two SCRs:
 - (1)In parallel

- (2) In series
- (3)In inverse-parallel
- **(4)** None of the above
- What will be the PIV for diode in the given circuit:

- (1)
- 220√2V
- (4)0
- 75. Identify the given symbols and choose the correct option:

- (iii) o-
 - (i)
- (ii)
- (iii)

- **(1)** Diode
- **LED**
- Zener diode

- (2) Photodiode
- Zener diode
- Diode

- (3) LED
- Diode
- Zener diode

- (4)**LED**
- Zener diode
- Diode

- 76. Snubber circuit is used in thyristor circuits for:
 - (1) Triggering

(2) dv/dt protection

(3) di/dt protection

- (4) phase shift
- 77. The main reason for connecting a pulse transformer at the output stage of thyristor triggering circuit is to:
 - (1) amplify the power of the triggering pulse
 - (2) provide electrical isolation
 - (3) reduce the turn ON time of thyristor
 - (4) avoid spurious triggering of the thyristor due to noise
- **78.** The I-V characteristics for a triac in the first and third quadrants are essentially identical to those of ______ in its first quandrant.
 - (1) Transistor
- (2) UJT
- (3) SCR
- (4) None of the above
- **79.** Figure shows a thyristor with the standard termination of anode (A), cathode (K), gate (G) and the different junctions named J1, J2 and J3. When the thyristor is in reverse blocking mode:

- (1) J1 and J2 are forward biased and J3 is reverse biased
- (2) J1 and J3 are reverse biased and J2 is forward biased
- (3) J1 is forward biased and J2 and J3 are reverse biased
- (4) J1, J2 and J3 are all forward biased

80. The latching current in the below circuit is 4mA. The minimum width of the gate pulse required to turn on thyristor is:

- (1) 6 s
- (2) 1 s
- (3) 2 s
- (4) 4 s

81. The high frequency hum in the transformer is mainly due to:

- (1) laminations not being sufficiently tight
- (2) magnetostriction
- (3) oil of the transformer
- (4) tank walls

82. In transformers, which of the following statements is valid?

- (1) In an open circuit test, copper losses are obtained while in short circuit test, core losses are obtained.
- (2) In an open circuit test, current is drawn at high power factor.
- (3) In a short circuit test, current is drawn at zero power factor.
- (4) In an open circuit test, current is drawn at low power factor.

83. A 500 kVA, 3-phase transformer has iron losses of 300 W and full load copper losses of 600 W. The percentage load at which the transformer is expected to have maximum efficiency is:

- (1) 50.0%
- (2) 70.7%
- (3) 141.4%
- **(4)** 200.0%

84. For a single phase capacitor start induction motor which of the following statements is valid?

- (1) The capacitor is used for power factor improvement.
- (2) The direction of rotation can be changed by reversing the main winding terminals.
- (3) The direction of rotation cannot be changed.
- (4) The direction of rotation can be changed by interchanging the supply terminals.

85. A synchronous generator is feeding a zero power factor (lagging) load at rated current. The armature reaction is:

(1) magnetizing

- (2) demagnetizing
- (3) cross-magnetizing
- (4) ineffective

86. On the torque/speed curve of the induction motor shown in the figure four points of operation are marked as W, X, Y and Z. Which one of them represents the operation at a slip greater than 1?

- (1) W
- (2) X
- (3) Y
- (4) Z
- 87. The dc motor, which can provide zero speed regulation at full load without any controller is:
 - (1) series

- (2) shunt
- (3) cumulative compound
- (4) differential compound
- **88.** A three phase, salient pole synchronous motor is connected to an infinite bus. It is operated at no load on normal excitation. The field excitation of the motor is first reduced to zero and then increased in reverse direction gradually. Then the armature current:
 - (1) Increases continuously
 - (2) First increases and then decreases steeply
 - (3) First decreases and then increases steeply
 - (4) Remains constant
- **89.** A three-phase 440 V, 6 pole, 50 Hz, squirrel cage induction motor is running at a slip of 5%. The speed of stator magnetic field to rotor magnetic field and speed of rotor with speed of stator magnetic field are :
 - (1) zero, -50 rpm

- (2) zero, 955 rpm
- (3) 1000 rpm, -50 rpm
- (4) 1000 rpm, 955 rpm
- **90.** A three-phase synchronous motor connected to ac mains is running at full load and unity power factor. If its shaft load is reduced by half, with field current held constant, its new power factor will be.
 - (1) unity

(2) leading

(3) lagging

(4) dependent on machine parameters

91.	Velocity error constant of a system is measured when the input to the system is :										
	(1)	a unit step fu	nction		(2)	a uı	nit ramp func	tion			
	(3)	a unit impuls	e functi	on	(4)	a uı	nit parabolic i	function			
92.	The	Type-0 system	has :								
	(1)	1 pole at orig	in		(2)	2 pc	oles at origin				
	(3)	No pole at or	igin		(4)	sim	ple pole at ori	gin			
93.	The	range of K for	which t	he system	$1 s^3 + 3s^2$	² +3s	+K=0 becom	es stable.			
	(1)	0 < K < 9	(2)	K < 0		(3)	9 < K < ∞	(4)	None c	of these	
94.	Nat	ural frequen	cy of	a unity	feedba	ack o	control syst	em of	transfer	function	
	G(s)	$=\frac{10}{s(s+1)}$ is:									
	(1)	3.16 rad/sec			(2)	0.5	rad/sec				
	(3)	4.6 rad/sec			(4)		ne of these				
95.	In R-H criterion, if there are changes of sign in the elements of first column, then the number of sign changes indicates :										
	(1)	the number o	f roots	with nega	tive real	parts	5.				
	(2)	the number o	f roots v	with posit	ive real	parts.					
	(3)	the number o	f pair of	roots of o	pposite	sign.	•				
	(4)	the number o	f pair of	roots of s	same sig	gn.					
96.	The	settling time fo	or the sy	stem who	se char	acteris	stic equation s	$s^2 + 2s + 8$	=0 is:		
	(1)	4 sec	(2)	5 sec		(3)	2 sec	(4)	6 sec		
07	m)				1.3.	22.	0 . 0 . 0 1		•		
97.		given characte	-	•							
	(1)	Zero root in R		-	(2)		root in RHS	•			
	(3)	two roots in I	CDS or s	s-piane	(4)	ınre	e roots in RH	5 or s-pia	ne		
98.	The	phase angle for	r the tra	nsfer fund	ction, G	(jw) =	$=\frac{1}{(1+jwT)^2}$	at corner	frequency	y is:	
	(1)	45 degrees	(2)	-45 de	grees	(3)	– 90 degree	es (4)	90 degi	rees	

99. The transfer function of a system is given as $\frac{100}{s^2 + 20s + 100}$, the system is :

(1) An over damped system

(2) An under damped system

(3) A critically damped system

(4) An unstable system

100. For a stable system:

- .(1) The gain crossover occurs earlier than phase crossover.
- (2) The phase crossover occurs earlier than gain crossover.
- (3) The gain crossover and phase crossover frequencies are very near to each other.
- (4) The gain crossover and phase crossover frequencies are equal.